
Building a Bridge between the

Entity-Component-System and Data-Oriented

Design

BACHELORARBEIT 1

StudentIn Alessandro Morio, 1410601014
BetreuerIn DI Dr. Markus Tatzgern

Salzburg, 06.06.2016

i

Eidesstattliche Erklärung

Hiermit versichere ich, Alessandro Morio, geboren am 26.03.1992 in Freilassing, dass
ich die Grundsätze wissenschaftlichen Arbeitens nach bestem Wissen und Gewissen einge-
halten habe und die vorliegende Bachelorarbeit von mir selbstständig verfasst wurde. Zur
Erstellung wurden von mir keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet.

Ich versichere, dass ich die Bachelorarbeit weder im In- noch Ausland bisher in irgendeiner
Form als Prüfungsarbeit vorgelegt habe und dass diese Arbeit mit der den BegutachterIn-
nen vorgelegten Arbeit übereinstimmt.

Salzburg, am 06.06.2016

Unterschrift

Vorname Familienname Personenkennzeichen

ii

Kurzfassung

Diese Bachelorarbeit untersucht Methoden des Data-Oriented Designs (DOD) und Ele-
mente des Entity-Component-Systems (ECS) bezüglich der Spieleentwicklung. Darüber
hinaus werden Methoden des DOD auf die Elemente des ECS angewendet um die Perfor-
mance in einem ECS in Bezug auf ein Cache freundliches Design zu verbessern.

Aufgrund der komponentenbasierten Architektur des ECS, welches das objektorientierte
Prinzip Komposition an Stelle von Vererbung verwendet, ist der Quellcode gut strukturi-
ert, wiederverwendbar und erweiterbar. Das ist notwendig, wenn man groÿe und kom-
plexe Spiele entwickelt. Das ECS besteht aus drei Hauptbestandteilen: den Entitäten,
den Komponenten und den Systemen. Eine Entität repräsentiert ein Element in der Spiel-
welt. Komponenten stellen aufgabenspezi�sche Daten dar und haben keine oder wenige
Abhängigkeiten. Aufgabenspezi�sche Systeme verwalten und verarbeiten ihre jeweili-
gen Komponenten. Das Verhalten einer Entität wird durch die Komponenten bestimmt
aus denen sie besteht. Komplexe Entitäten bestehen einfach aus mehr Komponenten
als Einfache. Die Wiederverwendbarkeit des Quellcodes wird durch die Komponenten
gewährleistet. Diese können in anderen Projekten mit gar keiner oder wenig Änderungen
wiederverwendet werden. Während eines Spiels fragmentiert der Arbeitsspeicher auf-
grund der inkohärenten Erstellung und Löschung von Spielelementen. Das verlangsamt
die Geschwindigkeit mit der eine CPU arbeiten kann.

Um der Fragmentierung des Arbeitsspeichers entgegenzuwirken werden Methoden des
DOD angewendet. Die Grundlagen der Cache Architektur einer CPU werden erläutert
um ein besseres Verständnis des DOD zu bieten. Durch Methoden des DOD wie Con-
tiguous Arrays, Packed Data und Hot/Cold Splitting wird eine wesentliche Steigerung der
Performance erreicht. Diese Methoden organisieren Daten auf eine Cache freundliche Art
und Weise und werden auf die Elemente des ECS angewandt.

Schlagwörter:

Entity-Component-System, Data-Oriented Design, Spieleentwicklung, Komponentenbasierte
Architektur, Cache Ausnutzung, Komposition an Stelle von Vererbung

iii

Abstract

This bachelor thesis examines practices of Data-Oriented Design (DOD) and elements
of the Entity-Component-System (ECS) in terms of game development. Furthermore,
practices of DOD will be applied to elements of the ECS to enhance the performance of
an ECS concerning a cache-friendly design.

Due to the component-based architecture (CBA) of the ECS, which uses the object-
orientated programming principle composition over inheritance, the code base is well
structured, reusable and extendible. That is mandatory when building large and complex
games. The ECS consists of three principle elements: entities, components and systems.
An entity represents an element in the game world. Components represent task-speci�c
data and have no or few dependencies. Task-speci�c systems host and process its com-
ponents. The behaviour of an entity is determined by the components it is composed
of. Complex entities just hold more components than simple ones. The reusability of
the code base is granted by the components. They can be reused in other projects with
no or little change. During a game memory becomes fragmented due to the incoherently
creation and deconstruction of game objects. That slows the processing speed of a CPU
down.

To prevent the fragmentation of memory practices of DOD are applied. Basics of a CPU's
cache architecture will be speci�ed to provide a better understanding of DOD. Through
DOD practices like contiguous arrays, packed data and hot/cold splitting a signi�cant
performance boost is achieved. These practices organize data in a cache-friendly way and
will be applied to elements of the ECS.

Keywords:

Entity-Component-System, Data-Oriented Design, game development, component-based
architecture, cache utilization, composition over inheritance

CONTENTS iv

Contents

1 Introduction 1

2 Game Engine Architecture: Object Model Architectures 2

2.1 Object-Oriented Architecture (OOA) Models 2

2.2 Component-Based Architecture (CBA): Composition over Inheritance . . . 4

3 Entity-Component-System (ECS) 5

3.1 Systems: Game Functionality and Organization 9

3.2 Communication between Entities, Components and Systems 11

3.3 Design Patterns . 12

3.4 Drawbacks . 14

4 Data-Oriented Design (DOD) 15

4.1 Contiguous Arrays . 17

4.2 Packed Data . 18

4.3 Hot/Cold Splitting . 18

4.4 Drawbacks . 19

5 The Entity-Component-System and Data-Oriented Design 19

5.1 Components and Contiguous Arrays . 19

5.2 Components and Packed Data . 20

5.3 Components and Hot/Cold Splitting . 20

5.4 An Entity is only an Id . 21

6 Conclusion 21

1 INTRODUCTION 1

1 Introduction

The video game industry's budgets and sales �gures increase year by year (Hight and
Novak 2008, 8-17). In the early 1980s the budget of a video game project ranged from
$1,000 up to $10,000. Most games were developed by a single programmer in a few weeks.
Project management was informal and the only goal was to �nish the game. In the 1990s
game budgets started with $50,000 and rose up to $1,000,000. Team sizes increased to
6 - 20 people. At that time project management became an important part of the game
development process. At the beginning of the 21st century 3D game development spread
widely. Specialized project managers for every aspect of the game development cycle were
needed. 30 � 80 people were involved in �nishing a game project. The budgets of those
video game projects ranged from $5 million to $30 million. In recent years, from 2010 to
2014, video games worth about $80 billion were sold in the U.S. (Entertainment Software
Association 2015, 12). Hence, video game development has become a serious business
over the years.

In order to successfully �nish game projects, a game speci�c software framework is needed
which saves time and money (DeLoura 2009). A framework that makes game development
easier in terms of software engineering and working with art assets. Such a framework is
called a game engine. Before the �rst game engines were developed, all the game's logic
had to be implemented in hardware (Madhav 2013, 2-5). With the introduction of the
Atari Video Computer System (Atari 2600) in 1977, a standardized platform for video
games was introduced. Since then, game development was more about programming than
designing complex hardware. At that time hardware limitations were a fact game devel-
opers had to consider and games were written in Assembler. There were no development
tools for debugging. Therefore, the game programming e�ort was higher. By the 1990s
the programming language C spread widely (Ritchie 1993) and debugging software was
available on the PC and the Macintosh (Hight and Novak 2008, 13). That enabled game
projects to become more complex. In the mid-1990s the video game Doom was released
by id Software (Gregory 2014, 11-30). Doom's software architecture de�ned a clear sepa-
ration between the core software components, art assets, game world and game logic. Due
to the clear separation, new games of the same genre were developed by just creating new
art, game worlds and game logic with minor changes to the engine software. Therefore,
developers saved time and money because they could reuse core software components. At
that time the term game engine was associated with Doom. In the late 1990s �rst-person
shooter (FPS) games like Quake III Arena and Unreal were designed in terms of reusabil-
ity. The Quake engine could be customized with a scripting language called Quake C.
With these engines, nearly every game of the FPS genre could be created. Current game
engines like Unity, Unreal Engine and Source Engine allow the developer to create large
and complex games of a vast variety of genres. They implement diverse subsystems like
Havok Physics (Madhav 2013, 4). Therefore, programmers do not need to spend time
writing and maintain speci�c subsystems.

Modern game engines need a way to manage thousands of game objects (Gregory 2014,

2 GAME ENGINE ARCHITECTURE: OBJECT MODEL ARCHITECTURES 2

340-341, 848). They are rendered and updated multiple times per second. Due to that
fact a well-designed software architecture is needed. Software architecture is the way
a program is organized and how code base is designed (Nystrom 2014, 9-17). A well-
designed software architecture is �exible, reusable and extendible. It expects changes
and provides a clean way to do so. The Entity-Component-System (ECS) is a software
architecture that is capable of integrating changes in a clean way and produces reusable
code (Entity Systems Wiki, 2014a). The ECS is a component-based architecture (CBA).
Modern game engines like Unity are designed as CBAs (Unity Technologies 2016c).

Assume a well-designed game engine architecture provides a clean way a game is orga-
nized. It provides access to collections of game objects (Gregory 2014, 51-52). Moreover,
the architecture manages the construction and deconstruction of game objects and the
communication system. All the game objects are placed in RAM so that the CPU can
access and process them (Nystrom 2014, 269-278, 305). Furthermore, thousands of game
objects are created and deleted incoherently during a game. The memory is fragmenting.
The performance of a CPU that requests fragmented data drops by quite a lot due to
the fact that it has to access memory frequently whenever the data is not stored con-
tiguously. Accessing RAM is slow compared to the processing power of a modern CPU.
Therefore, a method for organizing fast process able data is needed. That method is
called Data-Oriented Design (DOD) (Collin 2014). In terms of game development, DOD
arranges game object data in contiguous arrays to achieve a defragmented memory layout
(Nystrom 2014, 275-284). Another DOD practice is the compression of game object data
into a mandatory collection of attributes. That leads to maximum of data objects a CPU
can retrieve.

2 Game Engine Architecture: Object Model Architec-

tures

The object model architecture is a large and important component of a game engine
architecture (Gregory 2014, 854-873). Game object model architectures determine how
game objects are modelled and simulated in the game world. They de�ne a variety of
game elements, their behaviour and properties that exist in the virtual world. There are
many ways how game object model architectures are designed. However, there are two
basic architectures: CBAs and object-oriented architectures (OOAs).

2.1 Object-Oriented Architecture (OOA) Models

A traditional and intuitive game object model architecture sets up a class hierarchy for
game objects (see �gure 1) (Gregory 2014, 873-881). OOAs are made of is-a relation-
ships. This relationship is known as inheritance. In that object-oriented approach every
game object is represented by a single or few class instances. Properties and methods of

2 GAME ENGINE ARCHITECTURE: OBJECT MODEL ARCHITECTURES 3

Figure 1: Example class hierarchy in a game (Gregory 2014, 854-879). Functionality is added

through inheritance. Class hierarchies may cause several problems like the deadly diamond.

parent classes are inherited to child classes. At �rst glance that means less code duplica-
tion. Initially game class hierarchies are simple and meaningful. However, as they grow
they become wide and deep. Moreover, there arise several problems with wide and deep
hierarchies.

First of all the maintenance and modi�cation of deep and wide class hierarchies cause
problems (Gregory 2014, 877-878). If a derived class has to be changed, it and all of its
parent classes have to be understood. Changing an overwritten function may interfere
with the parent classes' intent of the function. Therefore, without knowing about parent
classes, changing a derived class may cause serious bugs.

Another problem with class hierarchies is multiple inheritance (Gregory 2014, 99, 879).
Assume there is a new class which needs the behaviour and properties of two hierarchy
axes. Multiple inheritance enables a class to derive from two or more base classes. At
�rst multiple inheritance seems to solve the issue. However, multiple inheritance converts
a simple tree structure to a potentially complex graph. Additionally, a graph can lead to
the deadly diamond (see �gure 2). The deadly diamond describes the problem in which
a derived class has two copies of the same grandparent base class. A �nal disadvantage
with deep and wide class hierarchies is that they may cause The Blob (McCormick 1998)
also known as the bubble-up e�ect (Gregory 2014, 880-881). Initially the root of class
hierarchies is simple and only contains mandatory features. Though, as class hierarchies

2 GAME ENGINE ARCHITECTURE: OBJECT MODEL ARCHITECTURES 4

Figure 2: The deadly diamond and the resulting class memory layout (Gregory 2014, 99).

grow and new functionality is added, some code has to be shared by two or more unrelated
classes. One possibility is to use multiple inheritance. However, that may cause the deadly
diamond. The other possibility is to move the new functionality to a common parent class.
Over time all the important functionality is moved to the root classes. That leads to big
classes which no one dares to change. Additionally, the blob class appears in nearly every
subsystem. This is problematic because everyone who is working on the project has to
deal with that class.

2.2 Component-Based Architecture (CBA): Composition over In-
heritance

In contrast to OOAs there are CBAs (Gregory 2014, 881). CBAs consist of has-a rela-
tionships. That relationship is known as composition (see �gure 3). Composition means
that a source class holds an object, pointer or reference to another linked class. New
functionality is added through composition instead of inheritance. The source class owns
the linked class. That means the lifetime of the linked class depends on the source class.

CBAs favour composition over inheritance because there are several advantages of using
composition. A big advantage of composition is that objects can change their behaviour
at runtime (Gamma et al. 2007, 18-20). Behaviour changes through adding and removing
references to other objects. Another e�ect of composition is that classes are more focused

3 ENTITY-COMPONENT-SYSTEM (ECS) 5

Figure 3: Example class composition in a game (Gregory 2014, 881). Functionality is added

through composition instead of inheritance.

on one task. The �rst step in a CBA is to split software into small chunks of task-
speci�c data and functionality (Allan et al. 2006, 164). These small units of data and
functionality are called components. Components are plugged together to create complex
applications. Small task-speci�c units of software are easier to understand and maintain
than complex class hierarchies. Additionally, well-designed components can be reused in
di�erent applications with little or no change. Moreover, components are designed task
related. That means modifying a component requires no or little knowledge about other
tasks. That saves time and money when working with a CBA.

There are game speci�c frameworks using a CBA like Artemis-odb (Papari 2016) and
Entitas (Schmid 2016). The concrete CBA both frameworks use is the ECS. Artemis-odb
is a high performance ECS framework written in Java. It supports HTML5, Android and
iOS. Entitas is also an ECS framework especially made for C# and Unity. Entitas uses
internal caching and garbage collector speci�c optimizations to enhance the performance.
There also exists a Unity module which provides editor extensions to work with Entitas.

3 Entity-Component-System (ECS)

This thesis examines the ECS because it o�ers advantages which are mandatory for build-
ing large and complex video games (Allan et al. 2006, 164). When developing a video
game there has to be space for changes and extensions. The produced code may be reused
in other projects. The ECS is a software architecture which provides �exibility, reusabil-
ity and extendibility in terms of software development (Entity Systems Wiki, 2014a).
That is important for large projects like video games. The ECS is a CBA which mainly
consists of three principle elements: entities, components and systems (Entity Systems
Wiki, 2014b). In terms of a CBA the components of the ECS represent task-speci�c data.
Systems modify their respective components and represent the task-speci�c functionality.
Entities group di�erent component instances and form an element in the game world.

3 ENTITY-COMPONENT-SYSTEM (ECS) 6

Entity

An entity or game object is an element in the game world (Gregory 2014, 848). The game
world can consist of a vast amount of entities. Traditionally, game elements can be divided
into static and dynamic elements. Static elements don't actively move or interact with
gameplay. Examples for static elements are trees, rocks and walls. Dynamic elements
include heroes, monsters and spells. Furthermore, an entity does not always have to be
visible (Bilas 2002). A camera and a trigger area can also exist as an entity in the game
world.

In OOAs entities are represented by class hierarchies (Gregory 2014, 873-881). However,
there occur several problems when setting up class hierarchies for entities like the deadly
diamond. In a CBA an entity mainly consists of a unique identi�er and a collection of
attributes respectively components (Gregory 2014, 854, 871-873, 886). The components of
an entity determine the behaviour in the game world. Assume there is a health component
for example. That component determines whether the entity is damaged, currently losing
health or is dying. Depending on the state, the behaviour of the entity can change.
The unique identi�er is used to identify or search for a particular object. In most cases
the unique identi�er is an integer or a hashed string variable due to performance issues
(Gregory 2014, 276-277). Additionally, an entity can be classi�ed with di�erent tags.
Those tags can be used to query entities of a speci�c tag (Unity Technologies, 2016b).

The classic way to grant access to entities, is to store them in a global accessible list (Entity
Systems Wiki 2014c). The EntityManager class contains that list of entities and grants
access via functions. Moreover, the EntityManager manages the creation, modi�cation
and deletion of its entities. In some CBAs the entity class is entirely omitted (Gregory
2014, 886-887). The EntityManager no longer holds collections of entities. The methods
for working with entities are built around their components.

3 ENTITY-COMPONENT-SYSTEM (ECS) 7

Component

Figure 4: This �gure shows how entities can be composed of di�erent components (Gregory

2014, 873-877). The behaviour of an entity changes depending on the components it is composed

of.

The classic approach to provide an entity with abilities or behaviour is through inheri-
tance (Gregory 2014, 873-877). In a CBA an entity is extended through composition. A
component represents an ability or behaviour an entity can consist of (see �gure 4) (Gre-
gory 2014, 881-891). Components add features to entities through composition instead
of inheritance. The usage of components decouples software features, which in a class
hierarchy, have to interact with each other due to inheritance (Nystrom 2014, 213-217).
Components stand for their own. They don't know each other. When designing a new
component it should have no or in exceptional cases few dependencies. Therefore, mod-
ifying components is easy. The person who changes a component should not care about
other components. At some point components have to interact. However, that can be
directly controlled and not happens due to inheritance.

There are three ways how components can be organized (Gregory 2014, 881-887):

• Direct component references

• Generic components

• Pure component model

3 ENTITY-COMPONENT-SYSTEM (ECS) 8

Figure 5: A game object class with direct component references (Gregory 2014, 881-885). A

simple and straight forward approach.

Using direct component references is a simple method to implement components (see
�gure 5). Each component is represented by one class (Gregory 2014, 881-885). Each
class contains attributes and methods which determine the behaviour of an entity at
runtime. One possible implementation is a base entity class which holds references to
mandatory components like a transformation component. Classes which derive from base
entity class de�ne new component references to append new features. The components
are created in the constructor of derived entity classes. This approach uses hard-coded
component references. Therefore, it is not very �exible.

Figure 6: A game object class with a one-to-many relationship to generic components (Gregory

2014, 885-886). Generic components are more �exible than direct component references.

More �exible is the usage of generic components (see �gure 6). Each concrete component
derives from a base component class (Gregory 2014, 885-886). The entity class holds a list
of generic components. When iterating over the list of generic components, polymorphic
operations are performed. Such polymorphic operations include checking the type of
component and passing events to each component for a possible processing. Instead of a
�xed number of components per class, this design allows to dynamically create and add
only the components to an entity which are needed. Moreover, deriving from speci�c
entity classes is now unnecessary.

3 ENTITY-COMPONENT-SYSTEM (ECS) 9

Figure 7: The pure component model (Gregory 2014, 886-887). The components themselves

now hold the unique identi�er of their parent entity. The entity class is omitted.

The pure component model goes one step further (see �gure 7) (Gregory 2014, 886-887).
An entity only consist of a unique identi�er and a collection of components. There is no
other logic or important data in the entity class. Therefore, the pure component model
eliminates the entity class completely. Instead of the entity, the respective components
hold the unique id of the entity. Due to the fact that there is no entity class any more,
the creation of components needs to be considered. One solution is to use a factory
pattern which is responsible for the creation of components. Another challenge is the
communication between the components of an entity. Before the entity class was omitted,
components could communicate over the parent entity object. Therefore, there has to be
a new way components communicate with each other. One solution is a look-up function
to connected components by the entity's unique identi�er. The look-up function must be
fast because it is executed frequently. Another approach is to add the sibling components
into a linked list.

3.1 Systems: Game Functionality and Organization

A game engine consists of many interacting systems (Gregory 2014, 340-341, 916). Most
systems provide a periodically processing service for a particular task. In the ECS systems
host and update their respective components (Cohen 2010, 34-60). Each system's update
method is called in the game loop (Gregory 2014, 340-346). In one update step of a
system all of its associated and active objects are iterated and updated when required.
There are systems needed for rendering, animation, collision detection, movement and so
on. The animation and rendering system for example need to be synchronized at a rate
of 30 or 60 Hz to perform a �uent graphical representation.

The systems of a game engine provide functionality (Gregory 2014, 340-346). Each sys-
tem provides di�erent functionality. A render system for example provides the logic for
displaying entities on the screen. Another example of a system is the input system. This
system processes the input for a game. There is a variety of input types: mouse, keyboard,
controller, touch and so on. Depending on the input di�erent game logic is executed.

3 ENTITY-COMPONENT-SYSTEM (ECS) 10

Assume there is a game with astonishing graphics, lots of game logic and functionality. At
some point new functionality must be added to the game (Gregory 2014, 344). Therefore,
there has to be a clean way to implement new functionality to the game over and over
again. However, the game loop and the systems are already written. In order to add new
functionality in a clean way the systems provide a possibility to add callback functions to
their update method. That enables the programmer to add as much functionality as he
or she wants by just adding new callback functions.

Some content of the game has to be processed every frame or update step. Examples are
render able and animate able content. Besides that, there is also content which must only
be updated under certain circumstances (Gregory 2014, 345). For example if a player
presses a button or an explosion is going o�. Those circumstances are called events. An
event system processes the events of a game. The event system permits other systems to
register for speci�c events, �re events and allows them to respond to �red events. Actually
some event systems allow registering periodically events. Moreover, these periodic events
can be used to implement periodic updates by �ring an event 30 or 60 times a second.

Due to the fact there are many interacting systems, they have to be organized (Gregory
2014, 231). Hence, before a system can work, it has to be con�gured and initialized.
Some systems depend on other ones. A 2D animation system could depend on a texture
system. Therefore, the order of initialization is important. When the applications exits,
the systems typically are shut-down in reverse order.

Figure 8: Singleton pattern (Gregory 2014, 232-234). The static getInstance() function is used

to retrieve the only static instance of a class.

In order to organize inter-connected systems, globally accessible systems are required. A
straight forward way would be to create a static instance for each system (Gregory 2014,
232-234). However, there is no control about how many systems of one kind can exist.
For most systems there should only be one instance. In order to accomplish that issue the
singleton pattern is one solution (see �gure 8). Additionally, there is no need to create a
global instance. The system's instance is globally accessible by a static class function.

Hence, there can only be one system. A method for start-up and shut-down is needed

3 ENTITY-COMPONENT-SYSTEM (ECS) 11

(Gregory 2014, 234-236). Therefore, each system has a start-up and a shut-down function.
The systems' start-up functions are called in the required order before the game loop
starts. In those functions the required systems are retrieved with the singleton pattern.
After the game loop, the systems' shut-down functions are called in reverse order.

Inside the game loop systems process their respective objects. Though some systems,
also depend on other ones in terms of processing (Gregory 2014, 922-925). As the order
of start-up and shut-down system functions is a vital part, the order of the systems'
updating function also is. A physics system may has to be updated �rst. Moreover, a
physics system may need a more frequently called update function to calculate physics
more precisely.

3.2 Communication between Entities, Components and Systems

In a game entities, components and systems have to communicate (Gregory 2014, 52).
Otherwise there would be no change or progress in the game. In terms of the ECS there
are two main types of communication:

• Inner-entity communication

• Inter-entity communication

The communication inside an entity, the communication of sibling components, needs
to be considered when designing an ECS. The reason for the need of communication
between sibling components is because components are isolated and stand for their own
(see section 3 Component). They don't know each other. A simple and fast but tightly
coupled approach would be to store references to required components in the respective
component classes (Nystrom 2014, 227-228). Another more dynamic approach is that
the entity class provides an access function to return its components (Unity Technologies,
2016a). The component could hold a reference to the parent entity. That reference can
be used to retrieve all the components the parent entity holds. In a pure component
model that access becomes a little trickier (Gregory 2014, 886-887). There is no parent
entity. The sibling components only share the same entity unique identi�er. With a smart
look-up function, which determines the position of sibling components in their respective
systems list by the entity's identi�er, the access to sibling components can be granted.
There is another more complex possibility how sibling components can communicate
(Nystrom 2014, 229-231). A little messaging system between sibling components can
be implemented. Each component would have a receiving function to process incoming
messages. The parent entity broadcasts the redirected message from a component to all
sibling components.

The second type of communication, the inter-entity communication, needs a speci�c sys-
tem that handles the communication between entities (McSha�ry et al. 2009, 33). By
default, there are no connections between entities. The system that performs that task

3 ENTITY-COMPONENT-SYSTEM (ECS) 12

is called event system (see section 3.1 Systems: Game Functionality and Organization).
That system allows other systems to register for speci�c events, �re events and allows
them to respond to �red events. When an entity is created or updated some systems may
want to react to that event (McSha�ry et al. 2009, 33). To realize that, an event is �red
when an entity is created or updated in speci�c circumstances. The event system is a
clean way to handle communication. Instead of registering for speci�c subsystems to lis-
ten to speci�c events there is one point where the events are handled. When for example
a collision occurs in the collision system, it simply sends an event to the event system
and all systems which registered for an event of that type will be noti�ed. Therefore, any
type of inter-entity communication is possible. There can be global events where every
system responds to. There also can be entity and component speci�c events.

3.3 Design Patterns

The ECS also reveals several design patterns. The most signi�cant patterns are:

• Model-View-Controller (MVC)

• Strategy

• Observer

Figure 9: Model-View-Controller pattern (Potel 1996, 1-2). This pattern is always present in

the ECS.

The MVC design pattern (see �gure 9) was used for the implementation of Smalltalk's1

graphical user interface (Potel 1996, 1-2). The model in the MVC represents data. The
view de�nes how the data of the model is displayed on the screen. The controller de-
termines how user interface interactions and events change the model. Since game de-
velopment is not primarily about user interfaces, the MVC has to be adapted to �t the
ECS. In the ECS the MVC pattern is always present. The model is represented by the

1. Programming language

3 ENTITY-COMPONENT-SYSTEM (ECS) 13

components (see section 3 Component). Components only hold data and have no or few
dependencies. A render system represents the view (see section 3.1 Systems: Game Func-
tionality and Organization). The render system accesses the data of render components
and displays them on the screen. The controller is represented by a variety of systems.
Since systems update their respective components, they are responsible how their com-
ponents are changed. However, modern game engine architectures may implement the
Model-View-Presenter (MVP) pattern (Potel 1996, 1-8). The MVP is a design pattern
which is based on the MVC. The MVP is a more modern approach which speci�es data
management, events and the presentation of data in a more concrete way.

Figure 10: Strategy pattern (Gamma et al. 2007, 315-317). Is applied to the ECS when an

entity class holds a list of generic components (see sections 3 Entity and 3 Component).

The strategy pattern (see �gure 10) consists of three parts (Gamma et al. 2007, 315-317).
The �rst part is the strategy interface which de�nes a common interface for concrete
strategies. The second part are concrete strategies which implement the interface. The
�nal part is the context. The context has a reference to a strategy object and manages
that reference. That reference of the context is con�gured with a concrete strategy. The
strategy pattern has to be adapted to work with the ECS (see sections 3 Entity and 3
Component). Instead of one reference the context holds a list of references to concrete
strategies. Additionally, the context calls the algorithm of all strategies. The strategy
pattern is applied when the entity class is composed of generic components. The entity
class represents the context. The strategy is represented by a base component class.
Concrete strategies are represented by concrete components.

The last mentioned pattern is the observer pattern (see �gure 11) (Gamma et al. 2007,
293-296). The observer pattern de�nes a one-to-many dependency between a subject and
its observers. The subject provides functions to register, remove and notify observers.
When the state of the subject changes, all observers are noti�ed. That pattern can be
used in the ECS to implement an event system (McSha�ry et al. 2009, 272-301). The
observer pattern has to be adapted to �t the requirements of an event system. Observers
register for speci�c event types. That means another parameter has to be passed to the
register function. When a speci�c event needs to be �red the subject's notify function
is called and the event object is passed. All observers that registered for the �red event

3 ENTITY-COMPONENT-SYSTEM (ECS) 14

Figure 11: Observer pattern (Gamma et al. 2007, 293-296). Can be used to implement an

event system (McSha�ry et al. 2009, 272-301).

type will be noti�ed and the event object is passed to registered observers for further
processing.

3.4 Drawbacks

The ECS has many advantages due to its CBA. However, there are also disadvantages
with the ECS. A system hosts and processes all of its respective components (see section
3.1 Systems: Game Functionality and Organization). That means a system iterates over
a list of components every update step. Therefore, a system also iterates over objects
that don't require an update because they may be inactive. That costs valuable time.
Another problem could be the inner-entity communication (see section 3.2 Communication
between Entities, Components and Systems). The component indirection costs time when
a component accesses a sibling component. The sibling component has to be looked up.
Depending on the look-up functions' implementation it costs more or less time. In an
object-oriented architecture the functionality is inherited (Gregory 2014, 873-881). The
required data or functionality is in the same object. There is no look-up required. A
further point that needs to be considered is memory fragmentation. During a game
many entities and components are created and deleted (Gregory 2014, 51-52). When a
component is created, it is added to a system which processes components of the same
type (Cohen 2010, 34-60). Due to the dynamic creation and deletion of components the
memory becomes fragmented (Nystrom 2014, 275-278, 305). The CPU needs to fetch data
from di�erent locations in RAM when iterating over a list of pointers to objects which
are scattered in RAM (Nystrom 2014, 271-273).

4 DATA-ORIENTED DESIGN (DOD) 15

4 Data-Oriented Design (DOD)

Memory fragmentation is a problem DOD can solve (Nystrom 2014, 269-284). The way
DOD organizes data prevents memory fragmentation. DOD introduces practices how to
manage data in a way that it can be processed more cache-friendly. This thesis examines
DOD due to the fact performance increases by just handling data di�erently. Through
contiguous arranging, sorting and splitting data in a cache-friendly way a signi�cant
performance boost is achieved.

Figure 12: Performance gap between CPU and RAM (Nystrom 2014, 270). The �gure displays

the speeds of CPU and RAM relative to their speeds in 1980. The �gure shows that in 2010 the

speed of RAM increased by about 10 times and the speed of the CPU increased by over 10.000

times!

In the last few decades CPU speed constantly increased (Nystrom 2014, 269-270). That
means CPUs can incredibly fast process data and perform calculations. Hence, before a
calculation can be done, data has to be transmitted from RAM to the CPU. Over the
years a performance gap arose between the CPU and RAM (see �gure 12). Actually it
can take hundreds of CPU cycles to retrieve a data package from RAM. Thus, the CPU
spends lots of time waiting for data when data is not organized in a suitable way.

Due to the fact that the CPU has to wait for data from RAM, caching was invented
(Nystrom 2014, 271-272). Modern CPUs have integrated memory chips. These memory
chips are called caches. CPUs can access caches much faster than RAM. Modern CPUs
like the Intel Core i7 family have di�erent caches to access and share data within the CPU
cores (Levinthal 2009, 4-14). All cores of one Intel Core i7 CPU socket share a common
L3 cache. That L3 cache has a local integrated memory controller which accesses RAM.

4 DATA-ORIENTED DESIGN (DOD) 16

Figure 13: When the CPU requires one byte from RAM to continue processing, it automatically

orders a contiguous chunk of memory around that byte and loads it into its cache (Nystrom 2014,

272). This contiguous chunk of memory is called cache line.

Each core has a L2 cache and a L1 cache for their own. The access latencies and sizes of a
CPU's caches are di�erent. The fastest but smallest cache is the L1 cache. The L2 cache
is slower than the L1 but can store more data. The L3 cache is the biggest and slowest
of all caches. Every time the CPU needs some data from RAM, it automatically orders a
contiguous chunk of memory and puts it into the cache. That chunk of memory is called
cache line (see �gure 13). If the next byte one core needs is in its L1 cache, it directly
reads it from there. When the next byte is not in the L1 cache, the CPU core looks up the
byte in L2 cache and transfers its cache line to the L1 cache if it was found. That is called
a cache miss. The same procedure is done with the L3 cache. If the required byte is not
in the L3 cache, the L3 cache memory controller requests a cache line from RAM. Which
takes many cycles to retrieve. Meanwhile, the CPU stalls because it can only continue
working when the next piece of data is retrieved. Per cycle four x86 instructions can be
decoded and issued. A current Intel CPU like the Intel Core i7-5960X can process about
298.19 GIPS (Giga-Instructions per second = 10�9 instructions per second) (Williams
2014). The Intel Core i7 family speci�es the access latencies as shown in table 1.

Data Source Latency
L1 cache hit � 4 cycles
L2 cache hit � 10 cycles
L3 cache hit (cache line unshared) � 40 cycles
L3 cache hit (shared cache line in another core) � 65 cycles
L3 cache hit (modi�ed in another core) � 75 cycles
Local DRAM � 60 ns

Table 1: Intel Core i7 access latencies (Levinthal 2009, 8-22)

Assume there is a component-based game architecture in which the entity class holds
references to its components (see section 3 Entity). There also is an EntityManager
which manages a global accessible list of entity pointers. When iterating over the list of
entity pointers, every entity object has to be transmitted to the CPU's cache (Nystrom
2014, 275-278). Each entity pointer has to be traversed resulting in a cache miss. After

4 DATA-ORIENTED DESIGN (DOD) 17

Figure 14: Memory fragmentation due to the incoherently creation and deconstruction of enti-

ties and components (Nystrom 2014, 275-278). The CPU has to chase pointers when processing

an array of entities like this.

the entity object was fetched and processed, its components need to be processed by the
CPU. Since an entity only holds references, not objects to its components, the data of
its components also needs to be fetched from another location in RAM by the CPU. For
each accessed component reference another cache miss occurs. Due to the incoherently
creation and deletion of entities and their components, memory becomes fragmented and
cache misses occur frequently (see �gure 14).

The goal of DOD is to prohibit cache misses and CPU stalls by organizing data cache
friendly (Nystrom 2014, 271-273). In other words, �organize your data structures so that
the things you're processing are next to each other in memory� (Nystrom 2014, 273). One
side e�ect of arranging data in contiguous arrays of homogeneous objects is that paral-
lelization becomes easier (Llopis 2009). There is a small update function which mainly
iterates over the contiguous data. Such a construct can easily split between multiple
threads. Another side e�ect of DOD is modularity. When the code base is designed tar-
geting data, its functions end up with no or few dependencies. In the end, DOD should
only applied on performance critical code bases (Nystrom 2014, 274). Optimizing code
that is rarely used costs more time refactoring than actually paying o�.

4.1 Contiguous Arrays

The game loop processes all active entities and their components (Nystrom 2014, 275-
280). In a straightforward software design entities hold references to their components.
Additionally, there is a global accessible list of entity pointers, which can be iterated.

4 DATA-ORIENTED DESIGN (DOD) 18

When accessing and iterating over these entities and their components cache misses occur
and the CPU stalls due to memory fragmentation. Instead of creating one main list of
entities, one array for each component type is created. The component arrays must hold
objects and not pointers to utilize the cache. When initializing an array of objects and not
an array of pointers, the entire memory for each object in the array is allocated. These
objects are arranged next to each other in memory. When a loop iterates over an array of
component objects the CPU can read the next component data from the cache because
they are arranged contiguous in memory. That concept prohibits frequent cache misses
and saves a lot of CPU cycles.

4.2 Packed Data

After storing component data in contiguous arrays, it can be cache friendly processed
(Nystrom 2014, 280-283). The next step is to consider how unused or not activated
components of entities are handled. An obvious approach would be to add a Boolean �ag
that determines whether a component is active or not. The component iteration process
would check each component whether it is active or not and then processes only active
components. That practice would load the �ag and its object into the cache. That causes
many cache misses when there are many inactive components that are skipped. The entire
contiguous array approach becomes useless due to the fact the data in a contiguous array
is not contiguous itself. Instead of checking a Boolean �ag, the objects in an array are
sorted by it. The update loop only iterates over active components, which are at the
beginning of an array.

4.3 Hot/Cold Splitting

At the current state of cache friendly programming a contiguous array of contiguous data
is processed rather rapidly. There is another possibility how the already optimized data
can be further optimized (Nystrom 2014, 283-284). Assume there is a component with
several member properties. A small set of properties is accessed every update step. The
rest is needed occasionally. When the CPU accesses a small collection of properties the
entire object and all of its properties are loaded in the cache line. Due to that fact less
objects �t into a cache line and cache misses occur more frequently. To prevent cache
misses, due to large objects, the data an object holds is split. The data is split into hot
and cold data. Hot data is data that is accessed frequently. Cold data is only needed in
speci�c cases. Hence, the component objects holds now only hot data and a reference to
an outsourced object with cold data. Therefore, more small objects �t in a cache line and
less cache misses occur.

5 THE ENTITY-COMPONENT-SYSTEM AND DATA-ORIENTED DESIGN 19

4.4 Drawbacks

DOD o�ers obvious advantages due to its cache-friendly organization of data. However,
there are also disadvantages which have to be mentioned. The �rst disadvantage is the
lack of polymorphism (Nystrom 2014, 285). Polymorphism is a powerful tool that enables
a collection of class instances of di�erent types to be manipulated by a common interface
(Gregory 2014, 101). Though data, is arranged in contiguous arrays of homogeneous
objects (Nystrom 2014, 285-287). These object arrays are not capable of polymorphism.
If an entity would hold a generic array of component pointers the code would be more
�exible. Components in the array only would have to implement the interface. The
dynamic dispatch would be used to determine which polymorphic operation to perform
at runtime. However, the whole cache utilization would be omitted. Another problem
occurs when sorting components by their activation state. When moving a component in
memory to activate or deactivate it, the pointer of its entity can get broken. Hence, the
entity's pointer has also to be updated when its components location in memory changes.

5 The Entity-Component-System and Data-Oriented De-

sign

After the theory about the ECS and DOD, both are combined. This chapter examines
an approach of the ECS in connection with DOD. The CBA is combined with practices
of DOD to show how to utilize the cache in an ECS. In order to utilize the cache in an
ECS the organization of entities and components is mandatory since they are accessed
and processed frequently (see sections 3 Entity and 3 Component). Components have
to be organized in a cache-friendly way. Practices of DOD are applied on entities and
components.

5.1 Components and Contiguous Arrays

The �rst step to utilize the cache in an ECS is to organize the components in contiguous
arrays (see section 4.1 Contiguous Arrays). Each component type has an own array of
objects (see �gure 15). The contiguous arrays of components are stored and iterated in
their respective systems (see section 3.1 Systems: Game Functionality and Organization).
Due to the fact that an array has a �xed size the maximum amount of components needs
to be considered (Nystrom 2014, 305-308). On the one hand, too many available objects
in the array waste memory. On the other hand when the array is too small, no additional
objects are available. Measurements of the needed components in the game must be taken
to estimate the maximum size.

5 THE ENTITY-COMPONENT-SYSTEM AND DATA-ORIENTED DESIGN 20

Figure 15: Contiguous component arrays (see section 4.1 Contiguous Arrays). The CPU can

rapidly process these arrays because the components in this arrays are stored next to each other

in memory.

5.2 Components and Packed Data

After the maximum size of the component arrays is found the activation status of com-
ponents needs to be considered (see section 4.2 Packed Data). The contiguous arrays of
components contain thousands of objects. However, not all the objects are needed at the
same time. A system which iterates over its component array has to �nd a way not to visit
all of them. At the start of a game fewer entities and components are typically initialized.
As the game goes on more and more entities and components are needed. Thus, a way
to separate needed components from available ones is required. A Boolean �ag is not a
suitable way to do so because that leads to cache misses. Therefore, the components are
sorted by activation state (Nystrom 2014, 281-283). Active components are in the be-
ginning of the array. There is a counter which determines how many active components
are in the array. The associated system iterates only until that counter. Whenever a
new component is required, a swap operation on a component array is performed. That
operation exchanges an inactive component with the �rst inactive component in the array
and increases the counter by one. Hence, the new active component can be associated
to an entity. Additionally, whenever a component is deactivated another swap operation
is performed. In this swap operation an active component is swapped for the last active
component in the array and the counter is decreased by one.

5.3 Components and Hot/Cold Splitting

The next step in improving the ECS in terms of DOD is to split the components in hot
and cold parts. Hot/cold splitting achieves less cache misses due to the separation of
frequently accessed data from rarely accessed data (see section 4.3 Hot/Cold Splitting).
When designing a component, that practice has to be considered. Assume there is a Play-
erComponent in an existing game (see �gure 16). The PlayerComponent has properties
like Name, Health and Controls. Such properties are accessed frequently when updating
the component. However, the PlayerComponent also consist of objects like ItemCollection

6 CONCLUSION 21

Figure 16: Example PlayerComponent. This component consists of frequently and rarely

accessed attributes.

and CharacterAttributes. That are rarely accessed properties. The ItemCollection object
is only needed when the player looks in his inventory. The CharacterAttributes object
is needed when the player is in a �ght. When the PlayerComponentSystem iterates over
its components, the entire data in each PlayerComponent has to be fetched by the CPU.
The bigger the objects the CPU has to fetch, the more cache misses occur. To minimize
cache misses, properties like ItemCollection become a pointer or reference instead of an
object.

5.4 An Entity is only an Id

Referring to a pure component model an entity is only an identi�er (Gregory 2014, 886-
887). Therefore, the entity class is omitted. There are only component class instances
which can identi�ed by the entity unique identi�er. Assume there are contiguous arrays
for each component type. At some point one component may need to access one of its
sibling components. Consequently, the index position of the sibling component in its
array has to be determined by the shared parent entity id. A hashing function would
be appropriate to perform that task (Gregory 2014, 276-278, 333). The id of the parent
entity would be used as a look-up key. Another approach is to organize the component
arrays in a way that shared components of an entity have the same index in its array
(Nystrom 2014, 289). The problem with both approaches is the sorting of components by
their activation state.

6 Conclusion

This thesis examined a software architectural part of the game development process and
the organization of data in cache-friendly way. Both parts of this thesis were combined

6 CONCLUSION 22

to show how DOD is applied to the ECS.

In game development there are two principle game architectures: OOAs and CBAs. OOAs
set up a class hierarchy for game objects. Behaviour of parent classes is inherited to child
classes. At �rst class hierarchies are simple and clearly laid out. However, as they grow
they become deep and wide. There arise several problems with deep and wide class
hierarchies. The maintenance and modi�cation of these hierarchies become expensive.
Multiple inheritance can cause a deadly diamond and functionality of classes bubble-up
and cause The Blob. On the other hand, there are CBAs. CBAs extend classes through
composition instead of inheritance. CBAs split up software into small chunks of task-
speci�c data. That leads to reusable and extendible software. Moreover, the maintenance
of software is easy to perform due to the fact a class has no or few dependencies.

The ECS is a CBA which consists of three principle elements: entities, components and
systems. The elements of the ECS represent objects in a game world, task-speci�c data
an entity can consist of and game functionality. The ECS is a suitable software archi-
tecture for games due to its CBA which provides reusability, extendibility and �exibility
in terms of software development. There are di�erent ways entities and components can
be designed. Most systems provide a periodically updating service for its respective com-
ponents. Moreover, additional functionality can be added through callback functions to
speci�c system to extend them. The communication between entities, components and
systems is realized with an event system. In an event system di�erent systems can register
for speci�c events, �re events and respond to �red events.

Entities and their components are stored in memory. To process these objects the CPU
has to request that data from RAM. The requested data is stored in the caches of a CPU
to access that data rapidly. Every time the CPU needs a byte to continue processing,
it automatically fetches a chunk of contiguous data around the required byte. That is
called a cache line. If the next required byte is in the cache, the CPU can fetch the data
from there. Accessing the cache is fast. However, when the required byte is not in the
cache, the CPU has to request data from RAM. That is called a cache miss. Requesting
data from RAM is slow compared to accessing caches. When the data of entities or
components is arranged as a contiguous array of objects, the CPU can read the data from
a cache and does not have to frequently fetch data from RAM. The goal of DOD is to
organize data in a cache-friendly way. That means organizing data in contiguous arrays of
objects, separating frequently accessed data from rarely accessed data and assuring that
the objects in contiguous arrays are also contiguous themselves.

DOD enhances the performance in an ECS due to its practices which organize data in a
cache-friendly way. The cache-friendly organization of components is an important task
when designing an ECS in connection with DOD. First of all, the components are stored
in contiguous arrays of objects in their respective systems to utilize the cache. Arrays have
a maximum size. Therefore, a maximum size of needed components has to be determined.
Due to the fact not all components of one array are needed, they have to be sorted by an
activation state. A system only iterates over active components. That lowers the objects
that a CPU has to fetch and prevents cache misses by deactivated components. After

6 CONCLUSION 23

that the next task is to identify frequently and rarely accessed data and separate it. The
separation of frequently and rarely accessed data leads to smaller objects a CPU has to
fetch. Therefore, more objects �t into a cache line and less cache misses occur.

There are further topics related to the ECS and optimizations concerning game engine
development. One topic this thesis only mentioned is parallelization. The goal of paral-
lelization is to utilize the hardware threads a CPU consists of (Gregory 2014, 361-372).
There are di�erent approaches how parallelization can be applied to a game engine. One
approach is to assign one thread per system. A master thread manages and synchronizes
all system speci�c threads. Another way how parallelization can be applied is through
divide-and-conquer algorithms. The work is split into small units and is processed by
di�erent threads. The results have to be merged when the work is complete. One prob-
lem occurs when threads depend on each other and have to wait for one thread which
has not �nished working yet. To decouple depending threads, a job system can be im-
plemented. A job is a small unit of relatively independent work. Jobs are managed by
a job system and are stored in a queue. Available threads access jobs in the queue and
process them. Therefore, threads no longer block each other. Current game engines do
all the work by themselves like computing physics, AI and path�nding (Gambetta 2016).
The Entity-Component-Worker architecture introduces workers to the ECS and converts
each system to a distributed system. Each distributed system consists of many workers
that compute components. Physics workers compute physics components and path�nd-
ing workers compute path�nding components. Therefore, the size and content of a game
world is no longer limited to processing power of a single sever. Hundreds of workers
simulate di�erent parts of the world.

To sum up, the ECS is a CBA which enhances the game development process in terms
of software architecture and development. DOD improves the ECS in terms of a cache-
friendly design. Both aspects, software architecture and data-oriented software develop-
ment, are a major part in improving the game development process.

ABKÜRZUNGSVERZEICHNIS 24

Abkürzungsverzeichnis

CBA Component-based architecture

DOD Data-Oriented Design

ECS Entity-Component-System

FPS First-person shooter

MVC Model-View-Controller

MVP Model-View-Presenter

OOA Object-oriented architecture

List of Figures

1 Class hierarchy:
http://www.gamedev.net/page/resources/_/technical/game-programming/

understanding-component-entity-systems-r3013 3

2 Deadly diamond:
Image from (Gregory 2014, 100) . 4

3 Class composition:
http://www.gamedev.net/page/resources/_/technical/game-programming/

understanding-component-entity-systems-r3013 5

4 Object composition using components:
http://cowboyprogramming.com/2007/01/05/evolve-your-heirachy/ 7

5 Direct component references:
(Gregory 2014, 883) . 8

6 Generic components:
(Gregory 2014, 886) . 8

7 Pure component model:
(Gregory 2014, 886) . 9

8 Singleton pattern:
https://upload.wikimedia.org/wikipedia/commons/b/b3/

SingletonUML.png . 10

9 Model-View-Controller pattern:
(Potel 1996) . 12

10 Strategy pattern:
(Gamma et al. 2007, 316) . 13

LISTINGS 25

11 Observer pattern:
(Gamma et al. 2007, 294) . 14

12 Performance gap:
http://gameprogrammingpatterns.com/data-locality.html 15

13 Cache line:
http://gameprogrammingpatterns.com/data-locality.html 16

14 Memory fragmentation
http://gameprogrammingpatterns.com/data-locality.html 17

15 Contiguous component arrays:
http://gameprogrammingpatterns.com/data-locality.html 20

16 PlayerComponent:
Image created by the author . 21

Listings

List of Tables

1 Intel Core i7 access latencies (Levinthal 2009, 8-22) 16

REFERENCES 26

References

Allan, B. A., R. Armstrong, D. E. Bernholdt, F. Bertrand, K. Chiu, T. L. Dahlgren,
K. Damevski, et al. 2006. �A Component Architecture for High-Performance Sci-
enti�c Computing.� International Journal of High Performance Computing Appli-
cations 20 (2): 163�202. issn: 1094-3420, accessed May 20, 2016. doi:10 . 1177 /
1094342006064488.

Bilas, Scott. 2002. �A Data-Driven Game Object System.� Slides presented at the Game
Developers Conference (GDC) 2002, San Jose, California, March 18-23. Accessed
March 5, 2016. http://scottbilas.com/files/2002/gdc_san_jose/game_
objects_slides_with_notes.pdf.

Cohen, Terrance. 2010. �A Dynamic Component Architecture for High Performance Game-
play - Insomniac Games.� Slides presented at the Game Developers Conference Canada
(GDC Canada) 2010, Vancouver, BC, May 06-07. Accessed March 3, 2016. http://
d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2011/06/6-1-2010.pdf.

Collin, Daniel. 2014. Introduction to Data-Oriented Design. Accessed March 3, 2016.
http://www.dice.se/wp-content/uploads/2014/12/Introduction_to_Data-

Oriented_Design.pdf.

DeLoura, Mark. 2009. Gamasutra: Mark DeLoura's Blog - The Engine Survey: Technology
Results. Accessed May 24, 2016. http://www.gamasutra.com/blogs/MarkDeLoura/
20090316/903/The_Engine_Survey_Technology_Results.php.

Entertainment Software Association. 2015. ESSENTIAL FACTS ABOUT THE COM-
PUTER AND VIDEO GAME INDUSTRY. Accessed March 11, 2016. http://www.
theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf.

Entity Systems Wiki. 2014a. What's an Entity System? - Entity Systems Wiki. Accessed
May 3, 2016. http://entity-systems.wikidot.com/.

Entity Systems Wiki. 2014b. ES Terminology - Entity Systems Wiki. Accessed May 15,
2016. http://entity-systems.wikidot.com/es-terminology.

Entity Systems Wiki. 2014c. Rdbms With Code In Systems - Entity Systems Wiki. Ac-
cessed May 15, 2016. http://entity-systems.wikidot.com/rdbms-with-code-
in-systems.

Gambetta, Gabriel. 2016. Gamasutra: Gabriel Gambetta's Blog - The Entity-Component-
Worker architecture and its use on massive online games. Accessed May 31, 2016.
http://www.gamasutra.com/blogs/GabrielGambetta/20160425/271221/The_

EntityComponentWorker _ architecture _ and _ its _ use _ on _ massive _ online _

games.php.

REFERENCES 27

Gamma, Erich, Richard Helm, Johnson Ralph, and Vlissides John. 2007. Design Pat-
terns: Elements of Reusable Object-Oriented Software. 34. printing. Addison-Wesley
professional computing series. Boston: Addison-Wesley. isbn: 978-0201633610.

Gregory, Jason. 2014. Game Engine Architecture. 2. ed. Boca Raton Fla. u.a.: CRC Press.
isbn: 978-1-466-56001-7.

Hight, John, and Jeannie Novak. 2008. Game Development Essentials: Game Project
Management. Clifton Park, NY: Thomson Delmar Learning. isbn: 9781418015411.

Levinthal, David. 2009. Performance Analysis Guide for Intelr CoreTM i7 Processor and
Intelr XeonTM 5500 processors. Technical report. Intel Corporation. Accessed May 5,
2016. https://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

Llopis, Noel. 2009. Data-Oriented Design (Or Why You Might Be Shooting Yourself in
The Foot With OOP) � Games from Within. Accessed March 3, 2016. http://
gamesfromwithin.com/data-oriented-design.

Madhav, Sanjay. 2013.Game Programming Algorithms and Techniques: A platform-agnostic
approach. Upper Saddle River, NJ: Addison Wesley. isbn: 9780321940155.

McCormick, Hays W. 1998. Development AntiPattern: The Blob. Accessed May 26, 2016.
http://antipatterns.com/briefing/sld024.htm.

McSha�ry, Mike, James Clarendon, Je� Lake, Quoc Tran, and David Graham. 2009.
Game Coding Complete. 3rd ed. Australia, United States: Charles River Media/-
Course Technology Cengage Learning. isbn: 9781584506805.

Nystrom, Robert. 2014.Game Programming Patterns. s.l.: genever benning. isbn: 9780990582908.

Papari, Adrian. 2016. junkdog/artemis-odb. Accessed May 8, 2016. https://github.com/
junkdog/artemis-odb.

Potel, Mike. 1996. MVP: Model-View-Presenter: The Taligent Programming Model for
C++ and Java. Technical report. Taligent, Inc. Accessed May 15, 2016. http://
www.wildcrest.com/Potel/Portfolio/mvp.pdf.

Ritchie, Dennis. 1993. The Development of the C Language. Accessed May 8, 2016. http:
//csapp.cs.cmu.edu/3e/docs/chistory.html.

Schmid, Simon. 2016. sschmid/Entitas-CSharp. Accessed May 8, 2016. https://github.
com/sschmid/Entitas-CSharp.

Unity Technologies. 2016a. Unity - Scripting API: GameObject.GetComponent. Accessed
May 15, 2016. http://docs.unity3d.com/ScriptReference/GameObject.GetComponent.
html.

Unity Technologies. 2016b. Unity - Manual: Tags and Layers. Accessed May 24, 2016.
http://docs.unity3d.com/Manual/class-TagManager.html.

REFERENCES 28

Unity Technologies. 2016c. Unity - Manual: Using Components. Accessed May 26, 2016.
http://docs.unity3d.com/Manual/UsingComponents.html.

Williams, Rob. 2014. Core i7-5960X Extreme Edition Review: Intel's Overdue Desktop
8-Core Is Here. Accessed May 5, 2016. http://techgage.com/print/core-i7-
5960x-extreme-edition-review-intels-overdue-desktop-8-core-is-here/.

ANHANG 29

Anhang

Datensets

Archived Web Pages

List of Figures

http://web.archive.org/web/20160526143921/http://www.gamedev.net/page/resou

rces/_/technical/game-programming/understanding-component-entity-systems-r

3013

http://web.archive.org/web/20160526144132/http://cowboyprogramming.com/2007/

01/05/evolve-your-heirachy/

http://web.archive.org/web/20160526144213/http://gameprogrammingpatterns.co

m/data-locality.html

http://web.archive.org/web/20160526144326/https://upload.wikimedia.org/wik

ipedia/commons/b/b3/SingletonUML.png

References

http://web.archive.org/web/20160526144551/http://scottbilas.com/files/2002/

gdc_san_jose/game_objects_slides_with_notes.pdf

http://web.archive.org/web/20160526144637/http://d3cw3dd2w32x2b.cloudfront.

net/wp-content/uploads/2011/06/6-1-2010.pdf

http://web.archive.org/web/20160526144717/http://www.dice.se/wp-content/upl

oads/2014/12/Introduction_to_Data-Oriented_Design.pdf

http://web.archive.org/web/20160526144741/http://www.gamasutra.com/blogs/Ma

rkDeLoura/20090316/903/The_Engine_Survey_Technology_Results.php

http://web.archive.org/web/20160526144828/http://www.theesa.com/wp-content

/uploads/2015/04/ESA-Essential-Facts-2015.pdf

http://web.archive.org/web/20160526145037/http://entity-systems.wikidot.com

/

http://web.archive.org/web/20160526144858/http://entity-systems.wikidot.com

/es-terminology

http://web.archive.org/web/20160526144956/http://entity-systems.wikidot.com

/rdbms-with-code-in-systems

http://web.archive.org/web/20160603152701/http://www.gamasutra.com/blogs/Ga

brielGambetta/20160425/271221/The_EntityComponentWorker

ANHANG 30

http://web.archive.org/web/20160526145347/https://software.intel.com/sites

/products/collateral/hpc/vtune/performance_analysis_guide.pdf

http://web.archive.org/web/20160526145419/http://gamesfromwithin.com/data-o

riented-design

http://web.archive.org/web/20160526194501/http://antipatterns.com/briefing/

sld024.htm

http://web.archive.org/web/20160526145525/https://github.com/junkdog/artem

is-odb

http://web.archive.org/web/20160526145631/http://www.wildcrest.com/Potel/Po

rtfolio/mvp.pdf

http://web.archive.org/web/20160526145723/http://csapp.cs.cmu.edu/3e/docs/

chistory.html

http://web.archive.org/web/20160526145823/https://github.com/sschmid/Entit

as-CSharp

http://web.archive.org/web/20160526145933/http://docs.unity3d.com/Manual/cl

ass-TagManager.html

http://web.archive.org/web/20160526150015/http://docs.unity3d.com/ScriptRef

erence/GameObject.GetComponent.html

http://web.archive.org/web/20160526175528/http://docs.unity3d.com/Manual/Us

ingComponents.html

http://web.archive.org/web/20160526150057/http://techgage.com/print/core-i

7-5960x-extreme-edition-review-intels-overdue-desktop-8-core-is-here/

