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Kurzfassung

Diese Bachelorarbeit untersucht wie kernel-level Threads und user-level Threads in Job Sys-
temen angewendet werden können. Zwei Ansätze von Job System Implementierungen werden
definiert und untersucht. Messungen von beiden Implementierungen werden durchgeführt, aus-
gewertet und interpretiert.

Die Organisation und Funktionsweise von Mehrkern-Prozessoren und Multithreading wird un-
tersucht um ein besseres Verständnis davon bereitzustellen wie kernel-level und user-level Threads
funktionieren. Das Konzept von Prozessen und Threads wird erläutert um zu verstehen zu geben
wie Spiele beziehungsweise Spiel-Engines vom Betriebssystem gehandhabt werden. Das The-
ma kernel-level und user-level Threads wird im Detail untersucht. Die Implementierungen der
zwei Thread Typen und deren Anwendung, in dem Betriebssystems Windows, wird untersucht .
Es werden auch verschiedene Multithreading Strategien von Spiel-Engines genannt. Eine dieser
Strategien die Prozessoren sehr gut auslastet, und auch von akutellen Spiel-Engines eingesetzt
wird, ist das Job System. Die Definition eines Job und eines Job System wird dargelegt. Darüber
hinaus wird der allgemeine Ansatz und Ablauf eines Job Systems erläutert. Verbesserungen die
auf ein grundlegendes Job System angewendet werden können sind beispielsweise Work Ste-
aling und lock-freie Programmierung.

Um die Auswirkungen von kernel-level und user-level Threads auf Job Systeme zu untersuchen
werden zwei Ansätze definiert und implementiert: ein reiner kernel-level Thread Ansatz und
ein hybrider Ansatz der kernel-level und user-level Threads einsetzt. Beide Ansätze werden
erläutert und Messungen, bezüglich Zeit und Prozessor Auslastung, werden durchgeführt. Die
Ergebnisse werden interpretiert und Verbesserungen werden diskutiert.

Schlüsselwörter: Multithreading, Spiel-Engine, Job System, User-Level Thread, Fiber
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Abstract

This thesis examines how kernel-level and user-level threads can be applied to job systems.
Two approaches of job system implementations will be defined and examined. Measurements
of both implementations are performed, evaluated and interpreted.

The organization and functionality of multi-core processors and multithreading is examined to
provide a better understanding how kernel-level and user-level threads work. The concept of
processes and threads is explored in order to understand how games, respectively game engines,
are handled by an operating system (OS). The topic kernel-level and user-level threads is inves-
tigated in detail. The Windows implementations of both thread types, and how they are used,
is investigated. Different multithreading strategies for game engines are named. One strategy
that utilizes processors very well and current game engines integrate is the job system. The
definition of a job and job system will be stated. Moreover, the general approach and flow of a
job system is examined. Improvements that can be applied to basic job systems is work stealing
and lock-free programming.

In order to examine the impact of kernel-level and user-level threads to job systems two ap-
proaches are defined and implemented: a pure kernel-level thread approach and a hybrid ap-
proach using kernel-level and user-level threads. Both approaches are explained and measure-
ments, concerning time and processor utilization, are performed. The results are interpreted and
further improvements are discussed.

Keywords: Multithreading, Game Engine, Job System, User-Level Thread, Fiber
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1 INTRODUCTION 1

1 Introduction

The first computer games were played on machines that had a CPU with single hardware core
which was responsible for calculating the game’s logic (Gregory 2014, 340-342, 361). There
is a single big loop which processes the game. The instructions of the game were processed
sequentially.
Games push hardware to its limits (Gregory 2014, 340-341, 920). A variety of calculations are
performed multiple times per second. To create a fluent graphical representation the animation
system and the rendering system have to be synchronized at least at 30 to 60 Hz. Other systems
like the physics system may have to be updated 120 times per second. The simulation of games
become more and more exigent, detailed and complex (Andrews 2015). Hence, the calculations
a processor needs to perform, continuously increase.

In 2002 the manufacturers of CPUs were faced with the fact that they were not able to increase
the clock rate of CPUs (Ramanathan 2006, 3). The heat emerged from the CPU and power
densities could not be handled properly (AMD Corporation 2005, 2-3). Therefore, the man-
ufacturers started producing microprocessors with multiple cores. Due to the fact multi-core
CPUs were introduced, software developers began writing code utilizing those newly available
hardware cores (Gregory 2014, 361).
AMD and Intel manufacture current high-end desktop multi-core processors. The AMD Ryzen
Threadripper comes with 16 cores and 32 hardware threads (AMD Corporation 2017). Intel
introduces its Core i9 processor family (Intel Corporation 2017a). The Intel Core i9-7980XE
will have 18 cores and 36 hardware threads. Thus, there are lots of cores that can be utilized in
video game simulations.

When game developers start coding games respectively game engines utilizing multiple cores,
they are faced with the challenges of multithreaded programming (Gregory 2014, 369-374;
Lake 2011, 373). At a coarse level, there are techniques and methods required for writing code
for multiple cores. One method for utilizing multiple hardware cores are fork and join algo-
rithms. Another method is to assign one thread per game engine subsystem. The subsystems’
threads are executing their specific logic and have to be synchronized. At a fine-grained level,
programmers need to protect access to shared resources among multiple threads (Stallings 2015,
230-231). Read and write access to shared resources may has to be atomic, since read and write
operations can consist of multiple instructions.

Making a game and writing code that utilizes hardware in a way that the simulation can be as
detailed as possible is high effort. Therefore, most games are build upon a specific game engine
(Gregory 2014, 11-13). The term ’game engine’ was first associated with the game Doom in the
mid-1990s. The software design of Doom had a clear separation between core software com-
ponents, assets, game world and game logic. Software components could be reused to create a
new game. Therefore, one major aspect of a game engine is the re-usability.
Most game engines target a specific genre or purpose (Gregory 2014, 13-32). There are 2D and
3D game engines. There are for example game engines focusing on first-person shooter (FPS),
real-time strategy (RTS) or racing games. Each game engine has a different focus on what is
important for the implementation and experience of the game.
There also exist game engines which provide a broad spectrum of possible game genre imple-
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mentations (Gregory 2014, 13-32). Examples are Unreal Engine1, Frostbite2 and Unity3. The
Unreal Engine was first designed to create FPS games. The current version, Unreal Engine 4,
is able to create a variety of 3D games in general. Most of the current broad spectrum game
engines are cross-platform including multiple desktop, virtual reality, mobile and console plat-
forms. Some engines like Unity and Unreal can be used for free. However, there are royalty
fees4 5.

In terms of an operating system (OS) a game is nothing else but a program (Russinovich,
Solomon, and Ionescu 2012, 5-14; Stallings 2015, 183-202). A process is a container for
resources used when executing the instance of a program. A process consists of at least one
thread. A thread is the part of a process which actually scheduled by the OS for the execution of
a process. Switching threads can be expensive. The kernel scheduler has to be triggered. Those
threads are also known as kernel-level threads.
There is another category of threads called user-level threads (Stallings 2015, 189-193). These
threads are entirely managed by the application respectively a threads library. The OS does
not know about them. One advantage of user-level threads over kernel-level threads is the cost
of thread switching. The kernel is not involved in those switches. One problem of user-level
threads that needs to be considered are blocking system calls. When a user-level thread executes
such a system call, not only that user-level thread is blocked, but also all the user-level threads
executing on a process or kernel-level thread are. The kernel cannot schedule another user-level
thread since the kernel is not aware of them.
Windows provides two mechanisms for using user-level threads: fibers and user-mode schedul-
ing (UMS) (Russinovich, Solomon, and Ionescu 2012, 13; Microsoft Corporation 2017)6. A
fiber is a lightweight thread. It has to be manually scheduled. UMS is a mechanism that appli-
cations can use to schedule their own threads and perform thread switches in user space.

Some current game engines like Frostbite and Naughty Dog use a specific strategy for utilizing
multiple cores: a job system (Andersson 2009; Gyrling 2015). Roughly, a job represents a
small portion of work (Gregory 2014, 371-372). There are worker threads which do nothing but
processing jobs. The job system stores and manages jobs in data structures like queues (Lengyel
2010, 381-386; Lake 2011, 379-383; Andrews 2015) and assigns threads to them. To achieve
a good scalability and performance, jobs should be designed small and relatively independent
from other jobs in terms of shared resources.

This thesis aims to state the basic structure of a multi-core microprocessor and gives an overview
how processes and threads work. The topic kernel-level and user-level threads will be inves-
tigated. Concerning user-level threads, the Windows mechanism fibers will be examined in
detail. The functionality of a job systems also will be examined. Different approaches how job
systems can be improved will be stated. The research question of this thesis is how a hybrid

1. https://www.unrealengine.com/what-is-unreal-engine-4 Accessed June 16, 2017
2. https://www.ea.com/frostbite/engine Accessed June 16, 2017
3. https://unity3d.com/de/unity June 16, 2017
4. https://unity3d.com/de/legal/terms-of-service/software Accessed 16 June, 2017
5. https://www.unrealengine.com/eula June 16, 2017
6. https://msdn.microsoft.com/de-de/library/windows/desktop/ms681917(v=vs.

85).aspx Accessed May 30, 2017
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approach using kernel-level and user-level threads can be applied to a job system and which
results, time and processor utilization concerning, compared to an approach with pure kernel-
level threads are discovered. Further improvements to job systems utilizing user-level threads
will be examined. One basic job system architecture will be defined and implemented with
both, kernel-level and user-level threads.

2 Multi-Core Processors and Multithreading

Computer with multi-core processors are state of the art (see section 1 Introduction) (Stallings
2015, 65, 101). Multi-core processors are utilized by the OS by distributing multiple processes
respectively threads across available cores. Computer hardware, particularly processors, and
the concept of processes and threads is examined in this section.

2.1 Computer Hardware: Overview and Processors

Figure 1: Basic hardware components a computer consists of: CPU, main memory, I/O modules
and system bus (Stallings 2015, 38-39).

A computer consists of different interconnected hardware components which the computer uses
to execute programs (Stallings 2015, 38-39). At a superficial level there exist the following
components:
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• Processor

• Main memory

• I/O modules

• System bus

The processor, also known as central processing unit (CPU), performs calculations and is
responsible for data processing (see figure 1) (Stallings 2015, 38-41). Figure 1 also shows
that a CPU contains registers. The instruction register for example stores bits that specify the
next action to be executed by the processor. In main memory program instructions and data
are stored temporary. I/O modules include a variety of different devices like hard disks and
displays. The system bus interconnects the processor, main memory and I/O modules in order
to enable communication between these components.

Figure 2: SMP organization with multiple processors sharing hardware components (Stallings
2015, 64-65).

Early processors were split up on multiple chips (Stallings 2015, 40). The next evolution of
processors is a processor on a single chip. This invention is called microprocessor. Micropro-
cessors became the fastest processors for general usage and, furthermore, evolved to multi-core
processors. One chip consists of multiple processors which again consist of multiple logical
processors. The multiple processors are called cores and the logical processors are known as
hardware threads.
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Considering only one processor/core a computer can be thought as a machine that works se-
quentially (Stallings 2015, 40-41, 62-65). The processor retrieves instructions of a program in
main memory (this process is called fetch) and executes them in sequence. In reality a com-
puter works parallel. E.g. instruction pipelining is used to overlap fetch and execute operations.
To maximize parallelism to improve performance computer designers came up with different
approaches. One of these is the symmetric multiprocessor (SMP).

A SMP is a single computer system where multiple processors share the same interconnected
hardware components (see figure 2) (Stallings 2015, 63-65). Moreover, the processors are equal
in terms of functionality (symmetric) and an OS controls the interaction between the multiple
processors and their programs. A general SMP organization consists of different core elements:
processors, main memory, I/O devices and a shared bus. Each processor has its own control unit,
arithmetic logic unit (ALU) and registers. Moreover, each processor can access main memory
and I/O devices through a shared bus. Communication between processors is possible through
memory or direct signaling.

There are potential advantages of a SMP over a system with a single processor (Stallings 2015,
63-64):

• Performance

• Availability

• Incremental growth

The work of a computer can be split between multiple processors for parallel processing.
(Stallings 2015, 63-64). If one processor shuts down, the other processors could continue work-
ing without the entire system halting. Moreover, additional processors can be added to enhance
the processing power.

The processor needs to access main memory in order to fetch instructions and data (Stallings
2015, 57-58). Over the years the processing speed of a CPU increased more than the speed for
accessing main memory. Therefore, caches were invented. The memory size of a cache is small
but the access speed is fast. There is a cache level hierarchy (see figure 3). The level 1 (L1)
cache is the fastest but with very limited cache size. The level 2 (L2) cache is slower than the L1
cache but can store more data and instructions. The level 3 (L3) cache can be shared between
multiple cores, has a large memory size but is slower than the L1 and L2 cache.

Current desktop processors are multi-core processors (see section 1 Introduction). A multi-core
processor unites multiple processors in one chip (see figure 3) (Stallings 2015, 65-66). Each
processor has its own registers, ALU and L1 cache (instruction and data). Figure 3 shows the
block diagram of the Intel Core i7-990X. Each core has its own L1 and L2 cache and a shared
L3 cache.

Not only personal computers make use of processors with multiple cores. Game consoles also
profit from the parallel processing power when simulating game worlds. Current consoles like
Playstation 3, XBOX 360, Playstation 4 and XBOX One come with multi-core processors (Gre-
gory 2014, 362-368).
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Figure 3: A multi-core processor with six cores and multiple caches (Stallings 2015, 65-66).

2.2 Basics of Operating Systems

An operating system (OS) is a program that manages application programs and provides an
interface to hardware components (Stallings 2015, 77-78). An OS should be convenient to use,
utilize system resources efficiently and be extendable/testable in terms of software development.

The single computer hardware components and their cooperation is a complex system (Stallings
2015, 78-79). When an application programmer would have to know and care about all this
complexity, writing a new application would take an enormous amount of time. Therefore, an
OS provides system programs, also known as utilities or library programs, that implement fre-
quently used functions and convenient interfaces, application programmers can use to develop
their user programs (like video games). Thus, one goal of an OS is to hide the complexity
of computer hardware. A selection of services that an OS provides to applications and their
programmers is the following:

• Program execution

• Access to I/O devices

• File access

• System access

• Application programming interface (API)

Early computers were programmed directly (Stallings 2015, 82-85). There was no OS. The
program was written in machine code and the computer executed that program exactly as it was
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written. Errors were communicated by specific lights blinking. With the invention of operating
systems user programs were no longer allowed to access hardware components directly. Fur-
thermore, altering memory containing the OS and executing privileged instructions, like I/O
instructions, is not allowed for user programs. When a user program attempts to execute such
instructions, the hardware transferred control to the OS. Due to that fact the concept of modes
of operation was introduced and the user mode and the kernel mode come to existence (see
figure 4). User programs execute in user mode where some areas in memory are protected and
the OS executes in kernel mode. In kernel mode protected memory areas can be accessed and
privileged instructions can be executed.

Figure 4: The left part of the image shows how Windows dispatches the WriteFile function
call (Russinovich, Solomon, and Ionescu 2012, 138). A mode switch from user mode to kernel
mode is performed.

The kernel mode provides access to services and functions only callable in kernel mode (Russi-
novich, Solomon, and Ionescu 2012, 2-4; Stallings 2015, 124-126). Windows refers to those
functions as kernel support functions. A program in user mode cannot call those functions.
There are specific calls a user program can do to access services and functions in kernel mode.
Those calls are known as system calls. Windows refers to them as native system services. Win-
dows and Linux provide many systems calls. System calls can be divided into the following
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categories: file system, processes, scheduling, inter-process communication and networking/-
socket.
Accessing I/O devices is slow compared to the processing power of a CPU (Stallings 2015,
85-87). An example is reading from and writing to a file. The CPU has to wait until the data is
transmitted.

An example how a system call is dispatched in Windows is illustrated in figure 4. On the left
side of the figure the function call WriteFile is dispatched (Russinovich, Solomon, and Ionescu
2012, 138). First, WriteFile is called in user mode. WriteFile calls the function NtWriteFile in
user mode which enters kernel mode. In kernel mode the real NtWriteFile function is called to
process the I/O request. After the operation is finished, it returns to the caller in user mode.

2.3 The Concept of Processes and Threads

Figure 5: Different models of processes and threads. Windows is an OS that supports multiple
processes with multiple threads per process (Stallings 2015, 184).

A process is the instance of a program in execution (Stallings 2015, 138-139). Moreover, a
process is much more than just an instance. A process consist of various elements. An excerpt
of these elements is:

• Identifier
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• Priority

• Program counter

• Registers / memory pointers (stack pointer)

• I/O information

• State

The identifier of a process serves the purpose to uniquely identify a process among others
(Stallings 2015, 39-41, 138-163; Tanenbaum and Bos 2015, 755). The priority of the process
determines the scheduling preference relative to other processes. The program counter of a
process points to the next instruction to be executed by the processor. Registers (see figure
1) control the operation of a CPU. Data like the next instruction to be executed is stored in
registers. Memory pointers of a process point to program code and data in memory which
associated with the process. Furthermore, memory pointers also refer to data shared by different
processes. Each process also has one or more stacks (last-in-first-out (LIFO) data structure)
respectively stack pointers. The stack size is initially set. Stacks are for example responsible
for storing function call addresses and function parameters. Besides the stack there is also the
heap. The heap is used to dynamically allocate memory during the execution. Part of the I/O
information are outstanding I/O requests and accessed files of the process.
The state determines whether the process is running or not (Stallings 2015, 138-154, 166).
There are different state models with different state types and different transitions between
those states. An example of a state model is the Five-State Process Model (see figure 6). When a
process is created to execute a program, it initially enters the New state. The Ready state signals
the OS that a process is prepared to be executed. When a process is executing its instructions,
it is in the Running state. A transition from Running to Ready can be triggered when the
maximum allowed execution time is over. That is also referred to as time slice. Another reason
for a transition from Running to Ready is preemption. Assume a process is running and is
interrupted by the OS to let another process execute its instructions. This procedure is called
preemption. The reason for a preemption might be a higher priority level of the other process.
A process enters the Blocked state when it requests a service which it has to wait for. A system
call could be one reason (see section 2.2 Basics of Operating Systems). If a process terminates,
it enters the Exit state.

A process is a complex entity (Stallings 2015, 168, 183-184). E.g the costs of a process switch.
Therefore, a process is divided into two parts: resource ownership and execution and schedul-
ing. Resource ownership includes the program copy and data in memory and ownership of files.
The execution and scheduling part is responsible for the execution path (instruction trace) of a
program and is scheduled by the OS. To distinguish both parts the part execution and scheduling
is called thread, also known as lightweight process, and the part concerning resource ownership
is called process.

A thread consists of similar elements as a process does (Stallings 2015, 185, 205):

• Identifier
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Figure 6: The Five-State Process Model. Between the creation and termination a process can
be in one of the three states: Ready, Running or Blocked (Stallings 2015, 144-147).

• Priority

• State

• Thread context

• Thread local storage

The identifier, priority and state serve the same basic purpose as in a process (Stallings 2015,
185-194, 201-205). The thread context is a set of information that can be saved when a thread
is not executing. The thread context includes for example the program counter and stack pointer
unique for each thread. The thread local storage is used to store variables unique for each
thread.
There are two types of threads, kernel-level threads and user-level threads. Section 3 Kernel-
Level Threads and User-Level Threads investigates this topic in detail.

Current OS’ like Windows support multithreading (Stallings 2015, 100, 184). The term multi-
threading reveals a technique of an OS to divide a single process into multiple threads that run
concurrently (see figure 5). On the right side of figure 5 two multithreading models are shown.
The OS of a SMP schedules and distributes threads across all available processors (Stallings
2015, 101, 113-114). Windows is such an OS. Multiple threads within one process can execute
concurrently on multiple processors.

Using multiple threads instead of multiple processes can be advantageous due to the fact they
are more lightweight (Stallings 2015, 101, 186). The time for creation and termination of thread
takes less time compared to processes. Furthermore, switching between threads produces less
overhead than switching between processes.
In general multithreading is also advantageous when an application has to execute different
independent tasks (Stallings 2015, 101, 186-187). Examples are foreground and background
work of an application or when the program structure offers modularity executable on threads.
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2.4 Concurrency and Multithreading Issues

When writing multithreaded applications developers have to face concurrency related issues that
they need to be aware of in order to correctly deal with those issues (Lake 2011, 373; Stallings
2015, 230-231). An excerpt is listed here:

• Atomic operation

• Critical section

• Deadlock

• Mutual exclusion

• Mutex

• Race condition

• Starvation

An atomic operation is a sequence of one or more instructions that can only be executed
as a whole or not at all (Lake 2011, 373-376; Stallings 2015, 231-249). Atomic operations
do not need to be protected by application code. When a thread is in a critical section of
code, that accesses shared resources, no other thread is able to enter this section. A deadlock
is a situation where multiple threads are unable to proceed because they wait for each other.
Multual exclusion means the ability that when one thread is in a critical section in which
shared resources are accessed, no other threads are allowed to be in any critical sections that
access any of those shared resources. A mutex7 is a programming mechanism that is used to
acquire exclusive access to data. A lock is acquired. Other attempts by threads to acquire the
lock are blocked. The thread which locks the mutex must be the one unlocking it. A race
condition is a situation in which multiple threads modify and read shared data and the result is
not deterministic. Starvation occurs when the scheduler ignores a thread for execution although
it is able to be executed.

3 Kernel-Level Threads and User-Level Threads

As mentioned in section 2.3 The Concept of Processes and Threads there are two general types
of thread implementations (Stallings 2015, 189):

• Kernel-Level Threads

• User-Level Threads

7. http://en.cppreference.com/w/cpp/thread/mutex Accessed June 18, 2017
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Figure 7: Three types of threading approaches: pure user-level threads, pure kernel-level threads
and a combined approach (multiple user-level and kernel-level threads) (Stallings 2015, 189-
194).

Kernel-Level Threads
A kernel-level thread (see figure 7) is the type of thread which is also known as lightweight
process (Stallings 2015, 189-193). Kernel-level threads are observed and administrated by the
kernel. The application using kernel-level threads is not involved in any direct thread man-
agement. The kernel manages processes and their threads. The OS Windows makes use of a
kernel-level thread model.

One advantage of kernel-level threads is that multiple threads of one process are able to be
executed parallel on multiple hardware cores (Stallings 2015, 193). Blocking threads is another
topic that can be handled by the kernel. If one thread of a process is blocked, the kernel can
schedule other threads of the same process. Thus, the OS tries to always run a ready thread.

The major disadvantage of kernel-level threads occurs when switching between threads of the
same process (Stallings 2015, 193-194). A mode switch from user space to kernel space has to
be performed (see section 2.2 Basics of Operating Systems). Moreover, when threads switch,
also known as context switch, the processor needs to save all registers (see section 2.1 Com-
puter Hardware: Overview and Processors) of the current running thread and load the registers
of the next thread (Stallings 2015, 475-476; Intel Corporation 2017b)8. Furthermore, the cur-
rent thread’s data is stored in the cache (see section 2.1 Computer Hardware: Overview and
Processors). When the next threads accesses different data, the data of the current thread is
possibly removed from the cache and the new data is transmitted from main memory to the
cache. Receiving data from main memory takes hundreds of cycles. This process of constantly

8. https://software.intel.com/en-us/node/506127 Accessed June 16, 2017
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removing data from cache and fetching data from main memory costs much time.

User-Level Threads
User-level threads (see figure 7) exclusively operate in user space (see section 2.2 Basics of
Operating Systems) (Stallings 2015, 189-193). The kernel does not know about them. It can
not distribute them across multiple processors. This kind of threads are entirely managed by
the application respectively a threads library. The data structures, life cycles and scheduling of
threads is all handled by the application.

There are some advantages of user-level threads over kernel-level threads (Stallings 2015, 192).
Switching between threads does not involve the kernel. All the thread data structures and man-
agement logic is within user space. The mode switches from user space to kernel space and
reverse do not occur.
Another advantage of user-level threads is the context depended applicable scheduling algo-
rithm (Stallings 2015, 192). Some applications focus on throughput. I.e. to maximize the
number of work units completed per unit of time (Stallings 2015, 433). Other applications may
target deadlines. The scheduling algorithm needs to maximize the number of deadlines met.

Due to the fact that the kernel is unaware of the threads in user space, the kernel schedules the
process or kernel thread, where the user-level threads are running, as one unit. Therefore, only
that unit can execute on a processor. A pure user-level threaded approach can not make use of
multiple hardware cores.
Another problem are blocking system calls (see section 2.2 Basics of Operating Systems) (Stallings
2015, 192-194). When a kernel-level thread blocks, the kernel can schedule another kernel-level
thread. However, the kernel is not aware of user-level threads. Therefore, if a user-level thread
blocks the kernel can not schedule another user-level thread. Hence, the process running the
user-level threads just blocks and has to wait until the blocking call is processed.

Thread Pools
Another topic related to threads is the thread pool. A thread pool is a collection of threads that
process work of an application (Stallings 2015, 201; Tanenbaum and Bos 2015, 911; Hodgman
2016). The threads are created once and reused throughout the application. That is one major
advantage of a thread pool. Thread creation is expensive when frequently and dynamically
creating and destroying threads for concurrent parts of the application.
The thread pool is also responsible for the management of its threads (Stallings 2015, 201;
Tanenbaum and Bos 2015, 911). Thread pools work with queues of tasks. Tasks are pushed to
the thread pool by the application and threads pop tasks from the queue and process them.
The implementation of a thread pool may need to consider blocking threads (Tanenbaum and
Bos 2015, 911). When a thread executes a task and blocks for e.g. I/O operation the thread
pool wants to schedule other threads. That would lead the thread pool to create further threads
and possibly create more threads than hardware threads are available. That situation is called
over-subscription (see section 3.2 Game Engines and Parallelization for more details).
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3.1 Implementations of Threads in Windows

Windows provides implementations for both, kernel-level and user-level threads (Russinovich,
Solomon, and Ionescu 2012, 12-14). The implementation of a kernel-level thread is referred to
as thread. The implementation of a user-level thread is called fiber. There also exists a mech-
anism called user-mode scheduling (UMS). A UMS thread is visible to the kernel. However, it
can perform a context switch in user mode. This thesis will concentrate on the implementation
of fibers.

3.1.1 Implementation of Kernel-Level Threads in Windows

In Windows each process is created with one kernel-level thread (Microsoft Corporation 2017)9

10. That thread is also referred to as primary/main thread. The thread itself is the part of a
process that is scheduled for execution (see section 2.3 The Concept of Processes and Threads).
All kernel-level threads one process consists of share its virtual address space and system re-
sources. Windows uses preemptive multitasking (see section 2.3 The Concept of Processes and
Threads) for scheduling threads.

Windows provides functions for working with kernel-level threads (Microsoft Corporation 2017)10.
An excerpt is stated in listing 1.

1 HANDLE WINAPI CreateThread(
2 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
3 _In_ SIZE_T dwStackSize,
4 _In_ LPTHREAD_START_ROUTINE lpStartAddress,
5 _In_opt_ LPVOID lpParameter,
6 _In_ DWORD dwCreationFlags,
7 _Out_opt_ LPDWORD lpThreadId
8 );
9

10 DWORD WINAPI ThreadProc(
11 _In_ LPVOID lpParameter
12 );
13
14 DWORD WINAPI GetCurrentThreadId(void);
15
16 VOID WINAPI Sleep(
17 _In_ DWORD dwMilliseconds
18 );

Listing 1: Thread function signatures taken from the MSDN (Microsoft Corporation 2017)10.

9. https://msdn.microsoft.com/de-de/library/windows/desktop/ms681917(v=vs.
85).aspx Accessed May 30, 2017

10. https://msdn.microsoft.com/de-de/library/windows/desktop/ms684847(v=vs.
85).aspx Accessed May 30, 2017
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To create an additional kernel-level thread in a process the CreateThread function is called (Mi-
crosoft Corporation 2017)11 12. The stack size of the thread is defined here and the address to
the ThreadProc function has to be passed. The creation flags parameter determines whether
the thread starts its execution directly after it is created or e.g. whether it is suspended. The
ThreadProc function is a placeholder for the function, defined in the application, which de-
termines the start address for a thread. In Windows the type LPTHREAD START ROUTINE
defines a pointer to this function and reveals the required function signature. GetCurrentThrea-
dId returns the thread identifier (DWORD) of the thread calling this function. Sleep suspends
the thread for the given time interval. When the value zero is passed, the currently execut-
ing thread gives up its time slice (see section 2.3 The Concept of Processes and Threads) and
another thread is scheduled for execution if possible.

When an error occurs the GetLastError will return an error code specifying the circumstances
of the error. This function can be used generally when errors occur using Windows-specific
thread, fiber or UMS functions.

3.1.2 Implementation of User-Level Threads in Windows

One implementation of threads operating in user space Windows provides is (Russinovich,
Solomon, and Ionescu 2012, 13; Microsoft Corporation 2017)11: Fibers.

Fibers
A fiber is a lightweight thread (Russinovich, Solomon, and Ionescu 2012, 13; Microsoft Cor-
poration 2017)11 12 . It has to be scheduled manually. Fibers run in the context of the threads
that schedule them. Fibers are invisible to the kernel. Hence, switching fibers do not involve
the kernel scheduler. There are several functions and macros for working with fibers, listing 2
lists an excerpt of those.

The ConvertThreadToFiber function converts the current thread into a fiber (Microsoft Corpo-
ration 2017)12 13 14. Before creating or scheduling fibers this function has to be called due to
the fact that fibers can only be executed by other fibers. This function has an optional parameter
which is a pointer to an arbitrary object associated to the fiber. This parameter can be retrieved
by the macro GetFiberData. One possible practice is to pass a fiber data structure holding data
related to the fiber. If the function is executed successfully a pointer to the fiber is returned. To
create a new fiber, CreateFiber is called. A new fiber can only be created by another fiber. This
function allocates memory for a new fiber object and sets up a stack. Unlike the CreateThread

11. https://msdn.microsoft.com/de-de/library/windows/desktop/ms681917(v=vs.
85).aspx Accessed May 30, 2017

12. https://msdn.microsoft.com/de-de/library/windows/desktop/ms684847(v=vs.
85).aspx Accessed May 30, 2017

13. https://msdn.microsoft.com/en-us/library/windows/desktop/ms682661(v=vs.
85).aspx Accessed May 30, 2017

14. https://msdn.microsoft.com/en-us/library/windows/desktop/ms686919(v=vs.
85).aspx Accessed May 30, 2017
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1 LPVOID WINAPI ConvertThreadToFiber(
2 _In_opt_ LPVOID lpParameter
3 );
4
5 LPVOID WINAPI CreateFiber(
6 _In_ SIZE_T dwStackSize,
7 _In_ LPFIBER_START_ROUTINE lpStartAddress,
8 _In_opt_ LPVOID lpParameter
9 );

10
11 VOID CALLBACK FiberProc(
12 _In_ PVOID lpParameter
13 );
14
15 PVOID GetCurrentFiber(void); //macro
16
17 PVOID GetFiberData(void); //macro
18
19 VOID WINAPI SwitchToFiber(
20 _In_ LPVOID lpFiber
21 );
22
23 VOID WINAPI DeleteFiber(
24 _In_ LPVOID lpFiber
25 );

Listing 2: Fiber function signatures taken from the MSDN (Microsoft Corporation 2017)12.

function the fiber is not scheduled in any way by this function call. FiberProc acts for fibers
in the same way the ThreadProc function does for threads (see section 3.1.1 Implementation of
Kernel-Level Threads in Windows). In Windows the type LPFIBER START ROUTINE defines
a pointer to this function and reveals the required function signature. The SwitchToFiber func-
tion is used to schedule fibers. Here you specify a fiber to be switched to and executed next.
When a fiber is no longer needed, it is deleted. The DeleteFiber function removes data like the
stack and registers of a fiber. If this function is called on the currently executing fiber, its thread
is also terminating.

3.2 Game Engines and Parallelization

Games, respectively game engines (see figure 8), require a lot of processing power in order to
simulate a detailed and credible game world (Andrews 2015). Therefore, utilizing all possible
processing units is one goal a game engine should focus on. The game is split up in multiple
parts that are executed concurrently on as many processors as possible. However, that is a
challenge. In games many different objects and systems interact with each other and depend on
one another (see figure 8).
Parallelizing applications with relatively clear and independent tasks is easier. An application
with a graphical user interface (GUI) could have one thread for handling GUI events and a pool
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of worker threads executing user commands and calculating expensive operations (Stallings
2015, 186; Hodgman 2016).

Since games have to be as fast as possible the synchronization (see section 2.4 Concurrency and
Multithreading Issues) overhead must be at a minimum (Andrews 2015). Therefore, a snapshot
or copy of commonly accessed data at a certain time is available for every system. That snapshot
is called execution state. Each system has its own copy of the execution state. Changes to
the systems’ execution state copy are sent to a state manager which processes all incoming
changes and broadcasts the updated execution state when all systems finished processing. The
data synchronization should be tied to certain time steps and can be or can not be equivalent to
a frame.

Figure 8: An example game engine diagram (Andrews 2015). The core part of this game engine
is the framework and the managers. The game engine can be extended by an arbitrary number
of systems representing game processing functionality.

A generalized game engine architecture can be structured as in figure 8 (Andrews 2015). The
framework contains i.a. data which is accessible through the execution state. Managers are
accessible through the singleton pattern and provide global functionality, which is used across
multiple systems. The concrete game logic/functionality is stored in different systems. Due
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to the modularity the system interface provides, the concrete systems must communicate with
each other and the engine. Accessing shared resources is handled by the state manager and
requesting functionality is handled by the service manager.

Figure 9: A coarse view of a game loop consisting of four steps (Andrews 2015): window
message processing, (task) scheduler execution, state change distribution and execution status
check.

The framework of a game engine also includes the game loop (see figure 9) (Andrews 2015).
The first step is to handle the window the game is running in. Next, the concrete systems and
their tasks need to be determined and executed. After the tasks have finished execution, the
changes to the execution state are distributed. The final step is to check the execution status to
decide to quit the game or perform other actions.

When threading a game engine a basic strategy can be applied: fork and join (Gregory 2014,
369; Hodgman 2016). The game engine executes its instructions sequentially until it reaches a
point where it can run code concurrently. E.g. a big loop of independent operations. The work
is split between multiple threads for processing (that process is called fork) and merged after all
threads finished working (that is called join). After the work is merged the game engine runs
again sequentially until the fork and join strategy can be applied again.

One technique to utilize multiple processors in a game engine is to assign one thread per major
system (AI, physics, render, etc.) (Granatir and Rodriguez 2010; Stallings 2015, 199-201;
Hodgman 2016). Such an approach can be referred to as coarse threading. A synchronization of
the execution state between all threads is required within a certain time step. Thus, some threads
may have to wait for others due to an unbalanced work load of different systems. Moreover, the
number of systems and their threads may not fit the number of available hardware threads and
therefore lead to over- or under-subscription (Intel Corporation 2017b)15. Under-subscription
describes the situation when there are less kernel-level threads than available hardware threads.
Thus, the processor is potentially not fully utilized. Over-subscription occurs when there are
more kernel-level threads than hardware threads. The OS has to schedule more kernel-level

15. https://software.intel.com/en-us/node/506100 Accessed June 16, 2017
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threads. The number of context switches increases (see section 3 Kernel-Level Threads and
User-Level Threads). That costs valuable time.

Another approach how to utilize multithreading in a game engine is to implement a job system
(Andersson 2009; Gregory 2014, 371-72; Andrews 2015; Stallings 2015, 199-201; Hodgman
2016). The game logic/functionality is defined as a set of jobs. Multiple jobs are spread across
available processors to be processed in parallel. That approach is also referred to as fine-grained
threading. More details about job systems and game engines is stated in section 4 Job Systems.

Using only coarse-grained parallelism has its limits (Stallings 2015, 199-201). Furthermore,
fine-grained parallelism with tasks is a complex challenge. Not every system can be efficiently
displayed as multiple tasks. A hybrid solution worked for Valve best. They identified sys-
tems which work efficiently when applying coarse-grained parallelism and others which utilize
a task-based approach. The concrete implementation of a hybrid approach depends on the
game/game engine and must adapted for specific purposes.

4 Job Systems

Current game engines like Frostbite and Naughty Dog (see section 1 Introduction) make use
of job systems since they are able to utilize multi-core processors very well. Thus, this thesis
examines the characteristics and practices of job systems.

Definition: Job and Job System
A job, also called task, is a set of instructions which represent a relatively small and independent
amount of work (Muffat-Méridol 2009a; Lake 2011, 379-383). A job can also be referred to
as some data and instructions working with that data (Gregory 2014, 371). A job is the basic
element a job system, also called task scheduler (Sanglard 2013; Reinalter 2017)16, is working
with. The responsibility of a job system is to assign jobs to threads. Those threads are then
processing their jobs. The data structure which holds jobs is in most cases a queue.

The goal of a job system is to decouple algorithmic parallelism from hardware parallelism (Gra-
natir and Rodriguez 2010; Minadakis 2011a). The work should not be assigned to a constant
number of threads. That leads to over-/under-subscription (see section 3.2 Game Engines and
Parallelization). It should scale with any number of available processors automatically. Hence,
the game is split up to independent jobs. E.g. an animation system processing all models would
be split to jobs animating a single model.

4.1 General Approach and Flow

Assume there is a system with N hardware threads. Furthermore, there is a primary thread (see
section 3.1.1 Implementation of Kernel-Level Threads in Windows) already executing instruc-

16. https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-
work-stealing-part-1-basics/ Accessed June 16, 2017
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tions. When a job system is initialized it creates worker threads for processing jobs (Muffat-
Méridol 2009a; Andrews 2015). In order to avoid over-subscription N-1 worker threads are
created. Therefore, job systems automatically scale with any number of logical cores (Mi-
nadakis 2011a).

A straight-forward approach stores all jobs in one queue (Muffat-Méridol 2009a; Andrews
2015; Reinalter 2017)17. All threads can push and pop jobs on that queue. Therefore, the
access to the queue must be locked with a synchronization primitive like a mutex (see section
2.4 Concurrency and Multithreading Issues). A mutex allows only one thread at a time to enter
a critical section.
Due to the fact all jobs are stored in one queue the applied scheduling policy is first-in-first-out
(FIFO), also known as first-come-first-served (FCFS) (Stallings 2015, 435-439). That means
the first job entered the queue will be the first job to be processed. The time spent waiting in a
queue to be processed equals the sum of execution duration of all jobs enqueued before.

1 typedef void (*JobFunction)(Job*, const void*);
2
3 struct Job
4 {
5 JobFunction function;
6 Job* parent;
7 int32_t unfinishedJobs; // atomic
8 ...
9 };

Listing 3: Job struct definition (Reinalter 2017)17.

1 namespace tbb {
2 class task {
3 protected:
4 task();
5
6 public:
7 virtual ˜task() {}
8
9 virtual task* execute() = 0;

10 ...

Listing 4: Task class definition (Intel Corporation 2017b)20.

There are two basic approaches how a job can be implemented:

• Function pointer/callback function and associated data (Andersson 2009; Lengyel 2010,

17. https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-
work-stealing-part-1-basics/ Accessed June 16, 2017
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381-390; Minadakis 2011a; Gyrling 2015; Reinalter 2017)18

• Class with virtual execution function and associated data (Muffat-Méridol 2009b; Lake
2011, 379f; Intel Corporation 2017b)19 20

As shown in listing 3 a job can be implemented as a struct with mainly a function pointer and
job specific data (Reinalter 2017)18. In this case, the job function has two parameters: the job
itself and a pointer to data the job is working with. Furthermore, the variable unfinishedJobs
determines whether the job is finished or not. When the job is created, the value is atomically
(see section 2.4 Concurrency and Multithreading Issues) incremented by a function. When the
job is finished, the value is atomically decremented by a function.
Listing 4 presents an excerpt of Intel’s Threading Building Blocks (TBB) task class (Intel Cor-
poration 2017b)20. The class has a virtual execute function which requires to be overridden. In
order to create a new task a concrete task class is created which derives from task and imple-
ments the execute function.

When using a job system to process the game, the systems (see section 3.2 Game Engines and
Parallelization) must describe their game logic/functionality as jobs and dependencies between
jobs (Minadakis 2011b; Andrews 2015).
In order to create a suitable job for the job system some considerations about the job design
need to be made. An imprecise statement is that a job should not be too big and not too small
(Minadakis 2011b; Sanglard 2013). The minimum complexity of a job should not result in a
job switching overhead and the maximum complexity should not cross a border where jobs can
no longer distributed efficiently across multiple workers.
Therefore, well sized and independent jobs utilize multi-core processors most, since they can
be spread across all available workers and do not have to wait on other jobs (Gregory 2014,
371-372).
Avoiding locks (see section 2.4 Concurrency and Multithreading Issues) or blocking calls (see
section 2.2 Basics of Operating Systems) in jobs is another job design advice. Locking or block-
ing call result in a blocked worker thread and may cause cache flush (Granatir and Rodriguez
2010).

One goal of a job is to be independent from other jobs. A game is a very complex simulation and
sets of rules (Gregory 2014, 8-13, 845-850; Andrews 2015). Therefore, dependencies between
different jobs do exist. E.g. before a scene can be rendered, all animations need to be calculated
first (Minadakis 2011b). That means the rendering system depends on the animation system and
has to wait for it. The game can be represented by a graph of jobs (see figure 10). That job graph
could represent one frame of a game. When a thread calls a wait function, the thread stops its
execution until the wait condition becomes true. Thus, the thread blocks and the utilization of
hardware threads decreases when the number of threads respects over-subscription (see section
3.2 Game Engines and Parallelization).

18. https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-
work-stealing-part-1-basics/ Accessed June 16, 2017

19. class CInternalTask in nulstein/nulstein/TaskScheduler.h
20. https://software.intel.com/en-us/node/506299 Accessed June 16, 2017
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Figure 10: An example job dependency graph (Minadakis 2011b). The big blocks represent
parent jobs which are related (colorized) to their child jobs (little blocks). In this example the
parent jobs depend on one another.

One approach how jobs can be designed in order to reduce contention of the primary thread
job queue is to initially create few jobs which again create sub-jobs which again can be pushed
within a workers job queue without locking (Andrews 2015).

4.2 Job System Improvements

Compared to other multithreading approaches like one thread per subsystem and fork-and-join
algorithms (see section 3.2 Game Engines and Parallelization) a simple job system does utilize
hardware threads very well (Muffat-Méridol 2009a; Andrews 2015). However, there are some
improvements that can be applied to a simple job system that further enhance performance.

Multiple Queues and Work Stealing
Instead of using one common queue for all jobs one job queue per thread can be implemented
(Muffat-Méridol 2009a). One common queue has much contention due to the fact that N threads
access that queue. At first the only active thread is the primary thread and the worker threads
sleep and wait for a signal that jobs are available. Then the primary thread pushes jobs to its
queue and signals worker threads that jobs may be available. The worker threads then pop jobs
from the primary thread queue and start executing them. Since jobs can create further jobs,
these are enqueued to the queue of the executing thread which results in no locks on worker
thread queues.

This approach can result in unbalanced job queues (Muffat-Méridol 2009a). That can cause
starvation of a thread. To overcome this situation the concept of work stealing can be used
(Reinalter 2017)21. When a thread has no job in its queue it determines another thread and tries

21. https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-
work-stealing-part-1-basics/ Accessed June 16, 2017
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to steal the bottom half of jobs from that queue. That requires a lock. However, that lock is
only used when the job queue is empty. Moreover, only two threads access such a queue. In
fact when the worker threads are initialized and wait for jobs to be processed they do steal jobs
from the primary thread.

Lock-Free Queues
One improvement to a simple job system with a global queue was to implement multiple queues
and work stealing. That reduces the amount of contention. However, there are still critical
sections which must be locked.
There exists a programming technique called lock-free or lockless programming (Microsoft
Corporation 2017)22. The essence of lock-free programming is that shared resources between
multiple threads can be safely accessed without using locking mechanics. However, lock-free
programming is very complex. A lot of knowledge about hardware and compiler is required.
In order to utilize lock-free programming in a job system a lock-free job queue would enhance
performance since there are many small jobs which are continuously created, enqueued and
dequeued (Reinalter 2017)23.

Figure 11: This figure shows overlapped job dependency graphs (Minadakis 2011b). When
working with frames the job graphs of the previous frame is marked with -1 and the job graph
of the next frame is marked with 1.

Job Graph: Overlapped Frames
There is a strategy which avoids blocking a thread entering a wait function (Minadakis 2011b).
The thread can help to process other available jobs until the wait condition is true. This scenario
only applies when the dependency graph allows other independent jobs to be processed. When

22. https://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.
85).aspx Accessed June 16, 2017

23. https://blog.molecular-matters.com/2015/09/25/job-system-2-0-lock-free-
work-stealing-part-3-going-lock-free/ Accesed June 16, 2017
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there are no possible jobs of the current frame available, then jobs of other frames can be
processed. This technique is called overlapped dependency graph execution (see figure 11).

There are further possibilities how job systems can be improved. Examples are custom schedul-
ing algorithms, job memory management and memory efficient job queues (Sanglard 2013;
Andrews 2015; Stallings 2015, 433-435; Reinalter 2017)24.

4.3 Game Engines and Job Systems: Examples

A game engine consists of many sub systems (Gregory 2014, 33, 340-341, 916). These systems
have a responsibility and process/do a specific work. In order to implement a job system the
game logic/functionality the systems execute need to be split up into independent portions of
work (Granatir and Rodriguez 2010; Minadakis 2011a).

Assume there is an animation system (Minadakis 2011b). The animation system animates all
models in the game. There is one big loop which iterates over all models and performs all
animations per frame. Since big loops are a good indicator for parallization (Granatir and
Rodriguez 2010), the loop is split up in jobs. Each resulting job would have the responsibility
to animate only one model. Therefore, there would be as many jobs as models to be animated.

Another system that can be represented by jobs is the AI system (Granatir and Rodriguez 2010).
Assume the AI system has an array of AI objects and iterates over the array every update
step. The AI may need information about their surroundings to determine their next decision.
Therefore, the AI would access the current execution state (see section 3.2 Game Engines and
Parallelization) and retrieve data. Read-only access to data is practicable since that can be
managed without locks. If data has to be written, outsourcing that logic in other jobs should be
considered.

4.4 Pros and Cons

There are clear advantages for using a job system (Intel Corporation 2017b)25 instead of di-
rectly working with threads. When using threads, the programmer need to consider utilizing the
hardware cores. On Windows each logical thread corresponds to a physical thread (see section
3 Kernel-Level Threads and User-Level Threads). When there are not as many threads as avail-
able processors, under-subscriptions (see section 3.2 Game Engines and Parallelization) occurs.
The application will not use all available processors. When there are more logical threads than
hardware cores over-subscription takes place. Another reason for working with jobs instead
of threads is that jobs are more lightweight in terms of initialization and termination. A job is
basically a small set of instructions that gets executed by a thread. A thread consists for instance
of a state and context data (see section 2.3 The Concept of Processes and Threads) that has to be
managed. Another advantage of using a job system is the custom scheduling algorithm that can

24. https://blog.molecular-matters.com/2015/09/08/job-system-2-0-lock-free-
work-stealing-part-2-a-specialized-allocator/ Accessed June 16, 2017

25. https://software.intel.com/en-us/node/506100 Accessed June 16, 2017
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be implemented. The OS typically uses fair scheduling algorithms like Round-Robin. In terms
of an OS that is reasonable. When writing a job system for a game engine the goal is to dispatch
jobs in an efficient way. Load balancing is a duty the job system administrates. It distributes
jobs equally over threads. When working with threads, load balancing has to be done manually.
To sum up, the major advantage of using tasks over threads is that it relieves the developers.
They can focus on designing tasks and do not have to care about multithreading.

One challenge of job systems is the correct and efficient implementation of a job system. That
is lots of work. The implementation of correct locking needs to be done. If the job system is
not working correctly, the entire game engine is not working correctly.
Another possible challenge for the programmers is thinking is tasks. An existing game or game
engine needs to be split into tasks (see section 3.2 Game Engines and Parallelization). The
effort to be made to split a system up in multiple tasks and defining dependencies needs to be
considered.

5 Implementation of Job Systems utilizing Threads

After the topics threads and job systems were examined, kernel-level and user-level threads will
be applied to job systems.
In order to examine the utilization of kernel-level and user-level threads in job systems two
approaches of job systems with different kinds of thread usage strategies were implemented.
Measurements concerning time and processor utilization usage will be performed. The results
of the two approaches will be presented and compared to each other. Further improvements
how the implementations could perform better will be stated.

The basic job system architecture is in the two implementations the same. Jobs are stored
in FIFO queues and are executed as fast as possible. The job system is used to execute jobs
of pseudo game systems. There are different systems (see section 3.2 Game Engines and
Parallelization), responsible for the game’s functionality, which push jobs to the scheduler.
The scheduler is responsible for distributing and assigning jobs to threads.

Note: The entire source code of the implementations can be downloaded following the link in
the appendix.

5.1 Job Management

A job is implemented as struct holding a function pointer and associated job-related data (see
listing 5 and section 4 Job Systems). The job holds a pointer to arbitrary data which can be
accessed within the job callback function, since the job itself is passed to the function. There
also is a pointer to a parent job and an atomic work counter which is used for job dependencies
(see section 4.1 General Approach and Flow).

To avoid memory allocations at runtime, which cause memory fragmentation, and provide some
management functions concerning jobs a JobManager is implemented (see listing 6) (Reinalter
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9 struct Job;
10
11 typedef void(*JobCallback)(Job*);
12
13 struct Job
14 {
15 Job()
16 : m_Data(nullptr), m_Parent(nullptr), m_WorkCounter(0)
17 {}
18
19 void* m_Data;
20 JobCallback m_Callback;
21 Job* m_Parent;
22 std::atomic_int m_WorkCounter;
23 };

Listing 5: Job.h (see source files of the author)

2017)26. The JobManager allocates the memory for all jobs in advance and provides functions
for retrieving a new job and finishing completed jobs. After a callback function is executed by
a worker, the FinishJob function is called to decrease the work counter (see listing 5) of the job
itself. When the work counter reaches zero, the job is completed. As other manager classes
the JobManager is implemented with the singleton pattern (see section 3.2 Game Engines and
Parallelization).

Jobs can be related (see section 4.1 General Approach and Flow). A major job may have an
arbitrary number of child jobs which belong to its parent (see figure 10). A child job is created
by calling the CreateChildJob function of the JobManager (see listing 6). This function sets the
parent of the child job and atomically (see section 2.4 Concurrency and Multithreading Issues)
increases the work counter of the parent by one. All the jobs, parent and children, are processed
by different worker threads. When a job function is finished executing, the FinishJob function
is called. When the work counter of the job reaches zero and it also has a parent, then the work
counter of the parent is also decreased by one. In that manner it can be determined by the parent
job whether it and all its children completed the execution.

Since jobs may depend on each other the JobManager provides the WaitForJob function (see
listing 6). Assume there is job A and job B. Due to the game rules job B is only allowed to
be executed after job A finished processing its logic. However, jobs are pushed to queues and
processed by worker threads depending on the number of jobs in the queue. To implement a
dependency between job A and job B the WaitForJob function is used. The function waits until
the target work counter is reached and then exits the function. In most cases the value of the
target work counter is zero since that value signals a complete job. When a job is pushed after
the WaitForJob function is called then it depends on the given job. This approach also works
with parent and child jobs.

26. https://blog.molecular-matters.com/2015/09/08/job-system-2-0-lock-free-
work-stealing-part-2-a-specialized-allocator/ Accesed June 16, 2017
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7 class JobManager
8 {
9 public:

10 ˜JobManager();
11
12 static JobManager* GetInstance();
13
14 Job* CreateJob();
15
16 Job* CreateChildJob(Job* parent);
17
18 void FinishJob(Job* job);
19
20 void WaitForJob(Job* job, int targetWorkCounter);
21 ...

Listing 6: JobManager.h (see source files of the author)

5.2 Scheduler and Worker Implementations

In order to examine the research question of this thesis two different scheduler/worker ap-
proaches are implemented. A pure user-level thread approach will not be examined due to
the fact only one hardware thread would be utilized (see section 3 Kernel-Level Threads and
User-Level Threads). The two approaches are listed here:

Assumption: There are N hardware threads and one primary thread is executing the game loop.

• N-1 kernel-level worker threads

• N-1 kernel-level scheduler threads with X user-level worker threads

Each implementation consists of a scheduler and workers. The scheduler is responsible for
the initialization of workers and their threads. Moreover, the scheduler provides a function for
pushing jobs to. Workers mainly process jobs. The exact flow depends on the implementation.

5.2.1 Pure Kernel-Level Thread Approach

N-1 Kernel-Level Worker Threads
This pure kernel-level thread approach consists of two elements: KernelThreadScheduler and
KernelThreadWorker.

The KernelThreadScheduler is the class game systems push jobs (the thread executing this in-
struction trace is the primary thread) to (see listing 7). The KernelThreadScheduler determines
the KernelThreadWorker with the minimum sized job queue and adds a job to that queue. In
order to access the KernelThreadScheduler the singleton pattern is applied: The GetInstance
function is used to globally retrieve the only instance of the scheduler. The scheduler holds



5 IMPLEMENTATION OF JOB SYSTEMS UTILIZING THREADS 28

8 class KernelThreadScheduler
9 {

10 public:
11 ˜KernelThreadScheduler();
12
13 static KernelThreadScheduler* GetInstance();
14
15 void Initialize();
16
17 void ActivateWorkers();
18
19 bool PushJob(Job* job);
20
21 bool AreAllWorkerThreadsReadyForProcessing() const;
22
23 ...

Listing 7: KernelThreadScheduler.h (see source files of the author)

an array of KernelThreadWorker objects. The Initialize function initializes N-1 KernelThread-
Worker objects. Furthermore, the KernelThreadScheduler offers functions to activate workers
and to check the ready status of worker threads.

The KernelThreadWorker is responsible for processing jobs (see listing 8). Each KernelThread-
Worker is initialized by the KernelThreadScheduler. Per KernelThreadWorker one kernel-level
thread is created. The stack size and address to its processing function is passed to the Cre-
ateThread function (see section 3.1.1 Implementation of Kernel-Level Threads in Windows).
The current stack size of a KernelThreadWorker’s kernel-level thread is 512KB. After the
kernel-level thread is created it enters the specified function and waits to be activated. As soon
as all KernelThreadWorkers are ready all of them are activated by the KernelThreadScheduler
shortly before the game’s systems start creating and pushing jobs to the KernelThreadScheduler.

The processing of jobs starts in the loop of the KernelThreadWorker (see listing 9). The current
implementation just waits for jobs to be pushed. If jobs are available, the worker tries to pop
a job from its job queue. That requires a lock. If the job was successfully popped the job
is executed and the FinishJob function of the JobManager is called to complete the job (see
section 5.1 Job Management).

5.2.2 Hybrid Approach: Kernel-Level and User-Level Threads

N-1 Kernel-Level Scheduler Threads with X User-Level Worker Threads
The basic hybrid approach with kernel-level and user-level threads is composed of three com-
ponents: FiberScheduler, FiberSchedulerThread and FiberWorker.

The interface of the FiberScheduler is very similar to the KernelThreadScheduler (see listing 7).
The FiberScheduler has for example functions for initialization, pushing jobs and activating its
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6 class KernelThreadWorker
7 {
8 public:
9 KernelThreadWorker();

10 ˜KernelThreadWorker();
11
12 ...
13
14 void Initialize(KernelThreadScheduler* scheduler);
15
16 DWORD ThreadProc();
17
18 bool IsReadyForProcessing() const;
19
20 void Activate();
21
22 Job* FrontJob();
23
24 bool PushJob(Job* job);
25
26 bool PopJob(Job** OUT_Job);
27
28 size_t JobCount();
29
30 size_t JobCount_Unsafe() const;
31
32 ...

Listing 8: KernelThreadWorker.h (see source files of the author)

threads. However, instead of holding an array of KernelThreadWorkers it has an array of Fiber-
SchedulerThreads. N-1 FiberSchedulerThread objects are initialized by the FiberScheduler and
jobs are pushed to those objects according to the minimum sized job queue.

A FiberSchedulerThread is a kernel-level thread that is responsible for managing user-level
threads and assigning jobs to them. The concrete user-level thread implementation used in this
application is the Windows mechanism fibers (see section 3.1.2 Implementation of User-Level
Threads in Windows). A FiberSchedulerThread mainly consists of an array of FiberWorker ob-
jects, a queue of ready FiberWorkers and a queue of jobs (see listing 10).
The initialization function of a FiberSchedulerThread creates a kernel-level thread with a spec-
ified stack size (512KB) and start address (see section 3.1.1 Implementation of Kernel-Level
Threads in Windows). As soon as the kernel-level thread is created it converts itself to a fiber
in order to be able to create and schedule/manage other fibers (see section 3.1.2 Implementa-
tion of User-Level Threads in Windows). Afterwards, its FiberWorkers are initialized. When
all FiberWorkers are initialized and pushed to its queue of ready FiberWorkers the FiberSched-
ulerThread waits to be activated.
After the FiberSchedulerThread enters its job processing loop it waits for jobs to be pushed to
its job queue (see listing 11). If jobs are available and FiberWorkers are ready a job is tried to
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35 std::unique_lock<std::mutex> guard(m_scheduleMutex);
36 m_scheduleCondition.wait(guard);
37 while (true)
38 {
39 while (JobCount_Unsafe() <= 0)
40 {
41 ...
42 //Improvement: work stealing
43 Sleep(1);
44 }
45
46 Job* job = nullptr;
47 if (PopJob(&job))
48 {
49 job->m_Callback(job);
50 JobManager::GetInstance()->FinishJob(job);
51 }
52 }

Listing 9: KernelThreadWorker.cpp (see source files of the author)

1 FiberWorker m_fibers[MAX_FIBERS_PER_SCHEDULER_THREAD];
2
3 std::queue<FiberWorker*> m_readyFibers;
4
5 std::queue<Job*> m_jobs;

Listing 10: FiberSchedulerThread.h (see source files of the author)

be popped. That process requires a lock. If a job is successfully popped, it is assigned to the
first ready FiberWorker. Then the fiber is switched from the fiber of the FiberSchedulerThread
to the fiber of the FiberWorker. The FiberWorker starts processing the job.

The FiberWorker represents the Windows user-level thread implementation fiber (see section
3.1.2 Implementation of User-Level Threads in Windows) with a job processing ability.
When the Initialize function of the FiberWorker is called a new fiber is created (see section 3.1.2
Implementation of User-Level Threads in Windows). The stack size (16KB), start address and
associated fiber object is passed to the CreateFiber function.
The FiberSchedulerThread switches to a FiberWorker when a job should be processed (see
listing 11). The fiber of the FiberWorker is then executing its Proc function (see listing 12).
The job is executed and completed with the FinishJob function of the JobManager. Afterwards
the FiberWorker is pushed to its FiberSchedulerThreads ready FiberWorker queue. Then the
fiber is switched back to the fiber of the FiberSchedulerThread.
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44 std::unique_lock<std::mutex> guard(m_scheduleMutex);
45 m_scheduleCondition.wait(guard);
46 while (true)
47 {
48 while (JobCount_Unsafe() <= 0)
49 {
50 ...
51 //Improvement: work stealing
52 Sleep(1);
53 }
54
55 /*
56 Important: First pop ready worker, then Job!
57 */
58
59 if (m_readyFibers.size() > 0)
60 {
61 FiberWorker* fiber = m_readyFibers.front();
62 Job* job = nullptr;
63 if (PopJob(&job))
64 {
65 fiber->SetJob(job);
66 m_readyFibers.pop();
67 m_currentExecutingFiber = fiber;
68 SwitchToFiber(fiber->m_FiberPointer);
69 }
70 }
71
72 }

Listing 11: FiberSchedulerThread.cpp (see source files of the author)

5.3 Challenges of the Implementation

Writing a multithreaded application, in terms of kernel-level threads, is a challenge. Read
and write access to shared resources need to be protected, data races and other concurrency
issues may occur (see section 2.4 Concurrency and Multithreading Issues). Furthermore, when
writing a user-level scheduler, user-level thread management within one kernel-level thread and
possibly over multiple kernel-level threads needs to be implemented. The developer needs to
consider problems which he or she never dealt with before.

First of all the implementation consists of multiple job queues. The access to those queues
need to be protected due to the fact multiple threads push and pop jobs on that queues. In
order to safely read or write data of a queue the executing thread has to enter a critical section
(see section 2.4 Concurrency and Multithreading Issues). A straight-forward approach would
wrap each access to a job queue with a critical section. However, that is not always necessary.
An example is the waiting loop for jobs in listing 9 and listing 11. The read access to the job
queue is not protected. I.e. the job count may not be correct. However, that does not matter
since the PopJob function has locked access to the queue and the correct execution of the logic



5 IMPLEMENTATION OF JOB SYSTEMS UTILIZING THREADS 32

38 void FiberWorker::Proc(void * p)
39 {
40 while (true)
41 {
42 if (m_CurrentJob && m_hasWork)
43 {
44 m_CurrentJob->m_Callback(m_CurrentJob);
45 JobManager::GetInstance()->FinishJob(m_CurrentJob);
46 }
47 m_hasWork = false;
48 m_SchedulerThread->PushReadyFiber(this);
49 SwitchToFiber(m_SchedulerThread->m_schedulerFiberPointer);
50 }
51 }

Listing 12: FiberWorker.cpp (see source files of the author)

depends on the PopJob function. The waiting loop serves the purpose to execute the locked
PopJob function as less frequent as possible to spare expensive instructions. Therefore, the
programmer always should consider whether a critical section is necessary or not.

Another challenge is the understanding of how kernel-level threads and user-level threads work
together. First of all kernel-level threads do run concurrently on multiple cores. On Windows
they use preemptive scheduling (see section 3.1.1 Implementation of Kernel-Level Threads in
Windows). Within one kernel-level thread multiple user-level threads can be scheduled. Fibers
(see section 3.1.2 Implementation of User-Level Threads in Windows) use cooperative schedul-
ing. A specific fiber has to be switched to by the application.
Switching fibers within the same kernel-level thread that created them can be done by simply
calling the SwitchToFiber (see section 3.1.2 Implementation of User-Level Threads in Windows)
function. However, switching fibers among multiple kernel-level threads is a challenge. Assume
the scenario in which a fiber, running on kernel-thread A, tries to switch to a fiber currently exe-
cuted by kernel-thread B. That can cause problems (Microsoft Corporation 2017)27. Therefore,
a strategy needs to be implemented that handles such situations.

5.4 Measurements and Results

Important Note
The implemented job systems are applied to a pseudo game. Hence, the implemented systems
of the pseudo game define and push job with specific characteristics. Implementing a full func-
tional game and a suitable job system goes beyond the scope of this thesis. Concrete job design
and their dependencies would have influence on the implementation of the job system. There-
fore, the measurements and results are limited to the characteristics of the jobs. The focus of
the performed measurements is job throughput.

27. https://msdn.microsoft.com/de-de/library/windows/desktop/ms686350(v=vs.
85).aspx Accessed June 18, 2017
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Job Design
Six pseudo systems were implemented for performing the measurements, each defining and
creating jobs with specific characteristics:

• SystemA

• SystemB

• SystemC

• ExpensiveSystemX

• ExpensiveSystemY

• ExpensiveSystemZ

System A to C represent systems which perform CPU or memory related work. SystemA cre-
ates jobs which perform numerous square root calculations. SystemB creates a variable of type
std::string and appends strings to that variable. SystemC represents a very small job. Only few
calculations are performed.
The expensive systems X to Z represent systems which perform expensive or potentially block-
ing system calls (see section 2.2 Basics of Operating Systems). ExpensiveSystemX opens a
file, reads some data and closes the file. ExpensiveSystemY creates a directory and removes it
again. ExpensiveSystemZ opens a file and closes it immediately.

There is another category of jobs that can be implemented with the current implementation
of the JobManager (see section 5.1 Job Management): jobs which depend on each other. For
this measurement no system with job dependencies is implemented due to the fact that the
WaitForJob function of the JobManager would stall the primary thread. This measurement
focuses on job throughput.

Measurement Tools and Preparation
The measurements take place on the notebook Acer Aspire E 17 E5-773G-5424 with the fol-
lowing specifications: Intel Core i5-6200U 2x 2.3 GHz Turbo Boost up to 2.8 GHz (4 hardware
threads) and 8 GB DDR3 PC3-12800 (800MHz).

The tools used for measurements were Sysinternals Process Explorer v16.21 and Intel VTune
Amplifier XE 2017 Update 2.

The Process Explorer is used to measure the following data:

• Context switches (see section 3 Kernel-Level Threads and User-Level Threads)

• CPU cycles

• I/O reads

Intel VTune Amplifier performs the following measurements:

• Total execution time

• Time for job creation and processing
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• Hotspot detection

For each implementation, pure kernel-level approach and hybrid approach, ten measurements
are performed. During the measurements all foreground applications are closed and as less
background processes as possible are executed. Since there is a variability in processor utiliza-
tion minimum and maximum values of results are noted. There is important information and
configuration which impacts on the measurements. The information and configuration partially
depends on the implementation.

General information and configuration:

• Program architecture: 32bit

• Release build

• One primary kernel-level thread is creating and pushing jobs in the game loop

• The number of jobs is 600000. 100000 per system.

Pure kernel-level approach specific:

• There are three kernel-level threads processing jobs

Hybrid approach specific:

• There are three kernel-level threads scheduling and executing user-level threads

• Per kernel-level thread there are 64 fibers processing jobs

Results
Note: The concrete measurement data can be downloaded following the link in the appendix.

The measurements were performed and the following results were recorded:
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The maximum total execution time of the implementations differs about 100ms. The minimum
total execution time of the hybrid approach is circa one second faster. However, there is more
range between the results of the hybrid approach. The kernel-level approach has less variability
between the minimum and maximum results.
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The results for the time for job creation and processing is similar to the results of the total
execution time of the implementations.
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The number of context switches during the job creation and processing presents a clear result.
The kernel-level approach measurements show that the minimum and maximum results is less
than the corresponding results of the hybrid approach. Thus, there is an overhead in the hybrid
approach implementation.
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The number of cycles during the job creation and processing is similar to the results of the
context switch measurements. The kernel-level approach measurements show that the minimum
and maximum results is less than the corresponding results of the hybrid approach. Hence, there
is an overhead in the hybrid approach implementation.
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The ExpensiveSystemX performs I/O reads. This measurement shows that the number of I/O
reads varies around 300 reads.

Unordered top hotspots of the pure kernel-level approach:

• close

• mkdir

• open

• Sleep

In terms of the kernel-level approach the top hotspots include close, mkdir and open. These
calls are system calls and potentially blocking (see section 2.2 Basics of Operating Systems).
The Sleep function call is also identified as a hotspot. The current implementation calls the
Sleep function when it e.g. waits for jobs. Section 5.5 Possible/Further Improvements examines
how that can be improved.

Unordered top hotspots of the hybrid approach:

• open

• Sleep

• std::string::append

• SwitchToFiber
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In terms of the hybrid approach the top hotspots include open and Sleep. These calls are also
hotspots of the kernel-level approach and already explained. Another hotspot is the std::string::append
function. The measurements of the number of context switches and cycles show that the hybrid
approach has an overhead. Fibers have to be explicitly switch to. Intel VTune Amplifier identi-
fied the SwitchToFiber function as a hotspot of the hybrid approach. That would also explain
the high numbers of context switches and cycles.

Seeing all measurements in context there is an overhead in the hybrid implementation due to
switching fibers. Top hotspots are potentially blocking system calls and Sleep function calls
due to the current implementation.

5.5 Possible/Further Improvements

Improvements: Algorithms and Data Structures
The current implementation creates N-1 kernel-level threads for processing jobs. The primary
thread mainly adds jobs to the queue. When working with frames (see section 4.1 General
Approach and Flow and section 4.2 Job System Improvements) the primary thread could also
process jobs when it completed adding jobs for the current frame. That would support the
processing of jobs.

Some jobs depend on each other (see section 5.1 Job Management). Therefore, the JobManager
provides the WaitForJob function. The current implementation of this function contains a loop
that checks whether the work counter reaches the target value. Thus, the thread executing this
function can be considered idle. Instead of just waiting for the work counter to become the
desired value, available jobs can be processed (Reinalter 2017)28. The waiting time can be used
efficiently.

All jobs are pushed the scheduler (see section 5.2 Scheduler and Worker Implementations). The
scheduler then identifies the worker job queue with the least jobs and pushes a job to it. Workers
pop jobs from their queues to process them. Hence, the access to the worker job queue must
be locked. One approach to improve this issue is work stealing in combination with job queue
management (see section 4.2 Job System Improvements): Each thread has its own job queue.
Worker threads steal jobs from the primary thread’s queue and push new jobs to their own
queue to avoid locking mechanisms on their worker queue. Work stealing from other worker
job queues requires a lock. However, work stealing occurs less frequently than pushing jobs.

Using lock-free job queues (see section 4.2 Job System Improvements) would further improve
performance since no locks would be used.

Improvement: Kernel-Level and User-Level Threads
The plain utilization of user-level threads in job systems does not have any benefits (see section
5.4 Measurements and Results). On the contrary, it generates a slight overhead. The required

28. https://blog.molecular-matters.com/2015/08/24/job-system-2-0-lock-free-
work-stealing-part-1-basics/ Accessed June 16, 2017
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memory for the user-level thread data structures is higher in contrast to a pure kernel-level thread
approach with N-1 worker threads. Moreover, there is a user-level thread switching overhead
that does not occur in the kernel-level thread approach. In order to justify the utilization of
user-level threads in job systems an advanced approach must be implemented.

There are advanced approaches of how kernel-level user-level threads can be used in order to
achieve a better utilization of processors. Assume there are N hardware threads available on
a system. Assume the hybrid approach of this thesis is processing jobs. There is one primary
kernel-level thread and N-1 kernel-level worker threads with X user-level threads per kernel-
level thread. Assume all kernel-level worker threads execute a user-level thread which processes
a job with a blocking system call (see section 2.2 Basics of Operating Systems). At this moment
the entire job system halts. There is no progress. In order to overcome this situation the job
system could provide more kernel-level threads than hardware threads are available (Stallings
2015, 193-196). These additional assistant kernel-level threads would be responsible for pro-
cessing blocking system calls and other expensive operations. Since user-level threads use
cooperative scheduling (see section 3.1.2 Implementation of User-Level Threads in Windows),
they can be moved to another kernel-level threads before execution expensive operations. After
the user-level threads finished executing the expensive operation, they are moved back to the
kernel-level worker threads. This approach would justify the utilization of user-level threads in
job systems.

6 Conclusion

This thesis examined how kernel-level threads and user-level threads can be applied to a job
system. First the basics of computer hardware components and operating systems were stated
to provide a foundation to understand how multithreading works. Next kernel-level threads
and user-level threads were introduced: how they work and their characteristics. Job systems
were examined and how they are used in game engines. Both topics, threads and job systems,
were combined and implemented. Two implementations were examined, stated and compared
in terms of time and memory.

Current games and game engines run on operating systems like Windows. Operating systems
provide an interface face to the hardware components of a computer like a processor, main
memory and I/O devices. The evolution of processors lead to multi-core processors. A program
in execution is called process. A process consist of various elements. An example is the iden-
tifier and the state. Furthermore, processes consists of one or more threads. Each thread in a
process also has an identifier and a state and can run on different processors. Thus, a program
can run concurrently. There are some challenges with multithreaded programs: locking critical
sections and objects, data races, dead locks etc.

Due to the fact that games push hardware to its limits, the computer respectively the processor
cores needs to be utilized as much as possible. Therefore, multithreading a game engine is a
way to achieve more performance. There are two basic types of threads: user-level threads and
kernel-level threads. Kernel-level threads are visible to the operating system. The OS distributes
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them on processors for execution. User-level threads are implemented in the application respec-
tively a threads library. The OS does not know about them and can not distribute them across
multiple processors. Windows provides a implementation of user-level threads called fibers.

There are multiple ways how game engines can be parallelized. A straight forward approach
is to assign one kernel-level thread per system. Another approach whose goal it is to utilize
hardware threads as much as possible is the job system. Besides the primary thread there are
kernel-level threads that exclusively process jobs. The systems of the game engine mainly create
jobs and push them to job queues. Job systems can be improved in multiple ways.

Research Question and Implementation
The research question of this thesis is how kernel-level threads and user-level thread can be
applied to job systems and which results, time and processors utilization concerning, are dis-
covered.

In order to examine the research question of this thesis two approaches of job systems utilizing
threads were implemented:

• Pure kernel-level thread approach

• Hybrid approach (kernel-level threads and user-level threads)

Job management is one major part of the job system implementation. A job consists of a
function pointer, data the job is working with and job dependency related data. Jobs are ad-
ministrated by a job manager. The job manager is responsible for the creation and completion
of jobs. Moreover, the job manager provides functions to establish dependencies and relations
between jobs.

Besides the job management, schedulers and workers were implemented. The pure kernel-
level thread implementation consists of two elements: the KernelThreadScheduler and the
KernelThreadWorker. The KernelThreadScheduler manages KernelThreadWorkers and assigns
jobs to them. Each KernelThreadWorker manages a kernel-level thread which exclusively pro-
cesses jobs.
The hybrid implementation consists of three elements: the FiberScheduler, FiberSchedulerThread
and the FiberWorker. The FiberScheduler manages FiberSchedulerThreads and assigns jobs to
them. The FiberSchedulerThread creates a kernel-level thread which is used to schedule and
execute fibers. Moreover, the FiberSchedulerThread manages an array of FiberWorkers. A
FiberWorker represents a fiber and job processing functionality.

Different measurements were performed. The total execution time and the time for creating and
processing jobs was measured. Furthermore, the number of context switches and cycles was
recorded. Top hotspots were identified. System calls, e.g. I/O reads, are expensive. Sleep func-
tion calls of the current implementation occur frequently when for example a worker currently
has no jobs in its queue. There also is a clear overhead in the hybrid implementation. Switching
between fibers causes more work for the processor. Without further improvements the usage of
user-level threads has no benefits.
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Outlook: Improvements and Related Topics
In order to further improve the implementations examined by this thesis the section 4.2 Job Sys-
tem Improvements and section 5.5 Possible/Further Improvements provide initial information.
Work stealing, lock-free programming and the implementation of overlapping frames are three
possibilities.
Concerning user-level threads there are also improvements that can be implemented. One pos-
sible improvement that would justify the usage of user-level threads in job systems is the usage
of more kernel-level threads than hardware threads available in the system. These additional
kernel-level threads would process blocking system calls and expensive operations. Section 5.5
Possible/Further Improvements examines that approach in detail.
In order to further develop and research the topics and implementations of this thesis both
approaches could be equipped with additional kernel-level threads for processing expensive
or blocking operations. The concrete handling of moving such operations to these additional
kernel-level has to be investigated.

There exist further topics related to this thesis. Intel’s TBB library was only superficially in-
vestigated by this thesis. Intel TBB provides more features than those mentioned in this thesis
(Intel Corporation 2017b)29. Another implementation that supports developers multithreading
their applications is the Grand Central Dispatch (Stallings 2015, 107-108). The Grand Central
Dispatch is a thread pool (see section 3 Kernel-Level Threads and User-Level Threads) mech-
anism implemented in Max OS X and iPhone iOS that executes tasks on threads concurrently.
Furthermore, it provides extra threads for blocking on I/O.
Scheduling algorithms were barely mentioned. There are scheduling algorithms for various pur-
poses (Stallings 2015, 433-435). Priority queuing is also often part of scheduling algorithms.
These algorithms can for example focus on turnaround time, deadlines, throughput or fairness.
An excerpt of scheduling policies is: FCFS, Round Robin and Highest Response Ratio Next.
Scheduling algorithms is a topic that can further be researched and applied to the scheduler of
a job system.
Game engines utilize multi-core processors with different strategies (see section 3.2 Game En-
gines and Parallelization). There are game engines whose source code is available online.
Epic Games provides access to the Unreal Engine 4 source code via GitHub: https://www.
unrealengine.com/ue4-on-github. After the access to Epic Games GitHub reposi-
tory is unlocked the source code can be found here: https://github.com/EpicGames/
UnrealEngine. The Unreal Engine makes use of multithreading30. Moreover, the Unreal
Engine makes use of tasks and task graphs31. One example that is implemented is with tasks
is a parallel for loop32. The source code of this engine can be downloaded and the used task
system can be modified and improved for further research.

29. https://software.intel.com/en-us/node/506045 Accessed June 16, 2017
30. https://github.com/EpicGames/UnrealEngine/blob/master/Engine/Source/

Runtime/Core/Public/HAL/ThreadManager.h Accessed June 14, 2017
31. https://github.com/EpicGames/UnrealEngine/blob/master/Engine/Source/

Runtime/Core/Public/Async/TaskGraphInterfaces.h Accessed June 14, 2017
32. https://github.com/EpicGames/UnrealEngine/blob/master/Engine/Source/

Runtime/Core/Public/Async/ParallelFor.h Accessed June 14, 2017
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To sum up, kernel-level and user-level threads can be utilized in job systems to enhance the
processor utilization of a game engine. The implementation of a high-performance job system
needs lots of effort and many improvements are possible. The usage of kernel-level threads,
without over-subscription, utilizes the multi-core processors very well. In order to justify the
utilization of user-level threads in job systems further improvements has to be implemented and
more research has to be done.



ACRONYMS 43

Acronyms

ALU Arithmetic logic unit

API Application programming interface

CPU Central processing unit

FCFS First-come-first-served

FPS First-person shooter

FIFO First-in-first-out

GUI Graphical user interface

LIFO Last-in-first-out

RTS Real-time strategy

SMP Symmetric multiprocessor

OS Operating system

TBB Threading Building Blocks

UMS User-mode scheduling
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Appendix

Link to the author’s source files and concrete measurement data:
https://github.com/animet/BA2_JobSystems_Threads

Archived Websites and Web Resources

Note: Only web sites which allow crawlers could be archived. Furthermore, links that refer to
video stream web site are not archived because the video file cannot be archived.

Footnotes

https://web.archive.org/web/20170617142230/https://www.unrealengine.
com/what-is-unreal-engine-4

https://web.archive.org/web/20170617142346/https://www.ea.com/
frostbite/engine

https://web.archive.org/web/20170617142421/https://unity3d.com/de/
unity

https://web.archive.org/web/20170617142505/https://unity3d.com/de/
legal/terms-of-service/software

https://web.archive.org/web/20170617142538/https://www.unrealengine.
com/eula

https://web.archive.org/web/20170618070311/http://en.cppreference.
com/w/cpp/thread/mutex

https://web.archive.org/web/20170617142636/https://msdn.microsoft.
com/de-de/library/windows/desktop/ms681917(v=vs.85).aspx
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https://web.archive.org/web/20170617142722/https://software.intel.
com/en-us/node/506127
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